Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
A framework for hypothesis testing and power analysis in the assessment of fit of covariance structure models is presented. We emphasize the value of confidence intervals for fit indices, and we stress the relationship of confidence intervals to a framework for hypothesis testing. The approach allows for testing null hypotheses of not-good fit, reversing the role of the null hypothesis in conventional tests of model fit, so that a significant result provides strong support for good fit. The approach also allows for direct estimation of power, where effect size is defined in terms of a null and alternative value of the root-mean-square error of approximation fit index proposed by J. H. Steiger and J. M. Lind (1980).It is also feasible to determine minimum sample size required to achieve a given level of power for any test of fit in this framework. Computer programs and examples are provided for power analyses and calculation of minimum sample sizes.
Psychological Methods – American Psychological Association
Published: Jun 1, 1996
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.