Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Variability of the Intermediate Atlantic Water of the Arctic Ocean over the Last 100 Years

Variability of the Intermediate Atlantic Water of the Arctic Ocean over the Last 100 Years Recent observations show dramatic changes of the Arctic atmosphere–ice–ocean system, including a rapid warming in the intermediate Atlantic water of the Arctic Ocean. Here it is demonstrated through the analysis of a vast collection of previously unsynthesized observational data, that over the twentieth century Atlantic water variability was dominated by low-frequency oscillations (LFO) on time scales of 50–80 yr. Associated with this variability, the Atlantic water temperature record shows two warm periods in the 1930s–40s and in recent decades and two cold periods earlier in the century and in the 1960s–70s. Over recent decades, the data show a warming and salinification of the Atlantic layer accompanied by its shoaling and, probably, thinning. The estimate of the Atlantic water temperature variability shows a general warming trend; however, over the 100-yr record there are periods (including the recent decades) with short-term trends strongly amplified by multidecadal variations. Observational data provide evidence that Atlantic water temperature, Arctic surface air temperature, and ice extent and fast ice thickness in the Siberian marginal seas display coherent LFO. The hydrographic data used support a negative feedback mechanism through which changes of density act to moderate the inflow of Atlantic water to the Arctic Ocean, consistent with the decrease of positive Atlantic water temperature anomalies in the late 1990s. The sustained Atlantic water temperature and salinity anomalies in the Arctic Ocean are associated with hydrographic anomalies of the same sign in the Greenland–Norwegian Seas and of the opposite sign in the Labrador Sea. Finally, it is found that the Arctic air–sea–ice system and the North Atlantic sea surface temperature display coherent low-frequency fluctuations. Elucidating the mechanisms behind this relationship will be critical to an understanding of the complex nature of low-frequency variability found in the Arctic and in lower-latitude regions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Variability of the Intermediate Atlantic Water of the Arctic Ocean over the Last 100 Years

Loading next page...
 
/lp/american-meteorological-society/variability-of-the-intermediate-atlantic-water-of-the-arctic-ocean-6O0JQCUcvu

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Meteorological Society
Copyright
Copyright © 2004 American Meteorological Society
ISSN
1520-0442
DOI
10.1175/JCLI-3224.1
Publisher site
See Article on Publisher Site

Abstract

Recent observations show dramatic changes of the Arctic atmosphere–ice–ocean system, including a rapid warming in the intermediate Atlantic water of the Arctic Ocean. Here it is demonstrated through the analysis of a vast collection of previously unsynthesized observational data, that over the twentieth century Atlantic water variability was dominated by low-frequency oscillations (LFO) on time scales of 50–80 yr. Associated with this variability, the Atlantic water temperature record shows two warm periods in the 1930s–40s and in recent decades and two cold periods earlier in the century and in the 1960s–70s. Over recent decades, the data show a warming and salinification of the Atlantic layer accompanied by its shoaling and, probably, thinning. The estimate of the Atlantic water temperature variability shows a general warming trend; however, over the 100-yr record there are periods (including the recent decades) with short-term trends strongly amplified by multidecadal variations. Observational data provide evidence that Atlantic water temperature, Arctic surface air temperature, and ice extent and fast ice thickness in the Siberian marginal seas display coherent LFO. The hydrographic data used support a negative feedback mechanism through which changes of density act to moderate the inflow of Atlantic water to the Arctic Ocean, consistent with the decrease of positive Atlantic water temperature anomalies in the late 1990s. The sustained Atlantic water temperature and salinity anomalies in the Arctic Ocean are associated with hydrographic anomalies of the same sign in the Greenland–Norwegian Seas and of the opposite sign in the Labrador Sea. Finally, it is found that the Arctic air–sea–ice system and the North Atlantic sea surface temperature display coherent low-frequency fluctuations. Elucidating the mechanisms behind this relationship will be critical to an understanding of the complex nature of low-frequency variability found in the Arctic and in lower-latitude regions.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Mar 12, 2004

References