Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Variability and Sources of the Internal Wave Continuum Examined from Global Moored Velocity Records

Variability and Sources of the Internal Wave Continuum Examined from Global Moored Velocity Records AbstractEnergy for ocean turbulence is thought to be transferred from its presumed sources (viz., the mesoscale eddy field, near-inertial internal waves, and internal tides) to the internal wave continuum, and through the continuum via resonant triad interactions to breaking scales. To test these ideas, the level and variability of the oceanic internal gravity wave continuum spectrum are examined by computing time-dependent rotary spectra from a global database of 2260 current meter records deployed on 1362 separate moorings. Time series of energy in the continuum and the three “source bands” (near-inertial, tidal, and mesoscale) are computed, and their variability and covariability examined. Seasonal modulation of the continuum by factors of up to 5 is seen in the upper ocean, implicating wind-driven near-inertial waves as an important source. The time series of the continuum is found to correlate more strongly with the near-inertial peak than with the semidiurnal or mesoscale. The use of moored internal-wave kinetic energy frequency spectra as an alternate input to the traditional shear or strain wavenumber spectra in the Gregg–Henyey–Polzin finescale parameterization is explored and compared to traditional strain-based estimates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

Variability and Sources of the Internal Wave Continuum Examined from Global Moored Velocity Records

Loading next page...
 
/lp/american-meteorological-society/variability-and-sources-of-the-internal-wave-continuum-examined-from-YE3M6AWUog

References (24)

Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0485
eISSN
1520-0485
DOI
10.1175/JPO-D-20-0155.1
Publisher site
See Article on Publisher Site

Abstract

AbstractEnergy for ocean turbulence is thought to be transferred from its presumed sources (viz., the mesoscale eddy field, near-inertial internal waves, and internal tides) to the internal wave continuum, and through the continuum via resonant triad interactions to breaking scales. To test these ideas, the level and variability of the oceanic internal gravity wave continuum spectrum are examined by computing time-dependent rotary spectra from a global database of 2260 current meter records deployed on 1362 separate moorings. Time series of energy in the continuum and the three “source bands” (near-inertial, tidal, and mesoscale) are computed, and their variability and covariability examined. Seasonal modulation of the continuum by factors of up to 5 is seen in the upper ocean, implicating wind-driven near-inertial waves as an important source. The time series of the continuum is found to correlate more strongly with the near-inertial peak than with the semidiurnal or mesoscale. The use of moored internal-wave kinetic energy frequency spectra as an alternate input to the traditional shear or strain wavenumber spectra in the Gregg–Henyey–Polzin finescale parameterization is explored and compared to traditional strain-based estimates.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Sep 16, 2021

There are no references for this article.