Access the full text.
Sign up today, get DeepDyve free for 14 days.
Ensembles of boreal summer coupled land––atmosphere climate model integrations for 1987 and 1988 are conducted with and without interactive soil moisture to evaluate the degree of climate drift in the coupled land––atmosphere model system, and to gauge the quality of the specified soil moisture dataset from the Global Soil Wetness Project (GSWP). Use of specified GSWP soil moisture leads to improved simulations of rainfall patterns, and significantly reduces root-mean-square errors in near-surface air temperature, indicating that the GSWP product is of useful quality and can also be used to supply initial conditions to fully coupled climate integrations. Integrations using specified soil moisture from the opposite year suggest that the interannual variability in the GSWP dataset is significant and contributes to the quality of the simulation of precipitation above what would be possible with only a mean annual cycle climatology of soil moisture. In particular, specification of soil wetness from the wrong year measurably degrades the correlation of simulated precipitation and temperature patterns compared to observed.
Journal of Climate – American Meteorological Society
Published: Jun 7, 1999
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.