Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Tropical Cyclone Kinematic Structure Retrieved from Single-Doppler Radar Observations. Part III: Evolution and Structures of Typhoon Alex (1987)

Tropical Cyclone Kinematic Structure Retrieved from Single-Doppler Radar Observations. Part III:... This paper is the third of a series that focuses on the applications of the ground-based velocity track display (GBVTD) technique and the GBVTD-simplex center finding algorithm developed in the previous two papers to a real tropical cyclone (TC). The evolution and structure of Typhoon Alex (1987), including full tangential winds, mean radial winds, one component of the mean flow, and their derived axisymmetric angular momentum and perturbation pressure fields are reconstructed from 16 volume scans (6.5 h of data with a 2-h gap) from the Civil Aeronautic Administration (CAA) Doppler radar while Typhoon Alex moved across the mountainous area in northern Taiwan. This analysis retrieves a plausible and physically consistent three-dimensional primary circulation of a landfalling TC using a single ground-based Doppler radar. Highly asymmetric wind structures were resolved by the GBVTD technique where the maximum relative tangential wind at z = 2 km evolved from 52 m s −1 (before landfall), to less than 40 m s −1 (after landfall), to less than 35 m s −1 (entering the East China Sea). Alex’s eye began to fill with precipitation while its intensity decreased rapidly after landfall, a characteristic of circulations disrupted by terrain. The mean radial wind field revealed a layer of low-level inflow in agreement with past TC observations. The outward slope of the eyewall reflectivity maximum was consistent with the constant angular momentum contours within the eyewall. After Alex entered the East China Sea, its circulation became more axisymmetric. The axisymmetric perturbation pressure field was retrieved using the gradient wind approximation, which, when used in conjunction with one or more surface pressure measurements within the analysis domain, can estimate the central pressure. The retrieved perturbation pressure fields at two time periods were compared with surface pressures reported in northern Taiwan. Considering the assumptions involved and the influence of terrain, good agreement (only 1–2-mb deviation) was found between them. This agreement indicates the relative quality of the GBVTD-retrieved axisymmetric circulation and suggests GBVTD-retrieved quantities can be useful in operational and research applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Tropical Cyclone Kinematic Structure Retrieved from Single-Doppler Radar Observations. Part III: Evolution and Structures of Typhoon Alex (1987)

Loading next page...
 
/lp/american-meteorological-society/tropical-cyclone-kinematic-structure-retrieved-from-single-doppler-eoZvevYRCb

References (34)

Publisher
American Meteorological Society
Copyright
Copyright © 1999 American Meteorological Society
ISSN
1520-0493
DOI
10.1175/1520-0493(2000)129<3982:TCKSRF>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

This paper is the third of a series that focuses on the applications of the ground-based velocity track display (GBVTD) technique and the GBVTD-simplex center finding algorithm developed in the previous two papers to a real tropical cyclone (TC). The evolution and structure of Typhoon Alex (1987), including full tangential winds, mean radial winds, one component of the mean flow, and their derived axisymmetric angular momentum and perturbation pressure fields are reconstructed from 16 volume scans (6.5 h of data with a 2-h gap) from the Civil Aeronautic Administration (CAA) Doppler radar while Typhoon Alex moved across the mountainous area in northern Taiwan. This analysis retrieves a plausible and physically consistent three-dimensional primary circulation of a landfalling TC using a single ground-based Doppler radar. Highly asymmetric wind structures were resolved by the GBVTD technique where the maximum relative tangential wind at z = 2 km evolved from 52 m s −1 (before landfall), to less than 40 m s −1 (after landfall), to less than 35 m s −1 (entering the East China Sea). Alex’s eye began to fill with precipitation while its intensity decreased rapidly after landfall, a characteristic of circulations disrupted by terrain. The mean radial wind field revealed a layer of low-level inflow in agreement with past TC observations. The outward slope of the eyewall reflectivity maximum was consistent with the constant angular momentum contours within the eyewall. After Alex entered the East China Sea, its circulation became more axisymmetric. The axisymmetric perturbation pressure field was retrieved using the gradient wind approximation, which, when used in conjunction with one or more surface pressure measurements within the analysis domain, can estimate the central pressure. The retrieved perturbation pressure fields at two time periods were compared with surface pressures reported in northern Taiwan. Considering the assumptions involved and the influence of terrain, good agreement (only 1–2-mb deviation) was found between them. This agreement indicates the relative quality of the GBVTD-retrieved axisymmetric circulation and suggests GBVTD-retrieved quantities can be useful in operational and research applications.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Oct 22, 1999

There are no references for this article.