Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The Poisson Link between Internal Wave and Dissipation Scales in the Thermocline. Part II: Internal Waves, Overturns, and the Energy Cascade

The Poisson Link between Internal Wave and Dissipation Scales in the Thermocline. Part II:... AbstractThe irregular nature of vertical profiles of density in the thermocline appears well described by a Poisson process over vertical scales 2–200 m. To what extent does this view of the thermocline conflict with established models of the internal wavefield? Can a one-parameter Poisson subrange be inserted between the larger-scale wavefield and the microscale field of intermittent turbulent dissipation, both of which require many parameters for their specification? It is seen that a small modification to the Poisson vertical correlation function converts it to the corresponding correlation function of the Garrett–Munk (GM) internal wave spectral model. The linear scaling relations and vertical wavenumber dependencies of the GM model are maintained provided the Poisson constant κ0 is equated with the ratio of twice the displacement variance to the vertical correlation scale of the wavefield. Awareness of this Poisson wavefield relation enables higher-order strain statistics to be determined directly from the strain spectrum. Using observations from across the Pacific Ocean, the average Thorpe scale of individual overturning events is found to be nearly equal to the inverse of κ0, the metric of background thermocline distortion. If the fractional occurrence of overturning ϕ is introduced as an additional parameter, a Poisson version of the Gregg–Henyey relationship can be derived. The Poisson constant, buoyancy frequency, and ϕ combine to create a complete parameterization of energy transfer from internal wave scales through the Poisson subrange to dissipation. An awareness of the underlying Poisson structure of the thermocline will hopefully facilitate further improvement in both internal wave spectral models and ocean mixing parameterizations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

The Poisson Link between Internal Wave and Dissipation Scales in the Thermocline. Part II: Internal Waves, Overturns, and the Energy Cascade

Journal of Physical Oceanography , Volume 50 (12): 14 – Dec 23, 2020

Loading next page...
 
/lp/american-meteorological-society/the-poisson-link-between-internal-wave-and-dissipation-scales-in-the-NWLlEbRkXA

References (34)

Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0485
eISSN
1520-0485
DOI
10.1175/JPO-D-19-0287.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe irregular nature of vertical profiles of density in the thermocline appears well described by a Poisson process over vertical scales 2–200 m. To what extent does this view of the thermocline conflict with established models of the internal wavefield? Can a one-parameter Poisson subrange be inserted between the larger-scale wavefield and the microscale field of intermittent turbulent dissipation, both of which require many parameters for their specification? It is seen that a small modification to the Poisson vertical correlation function converts it to the corresponding correlation function of the Garrett–Munk (GM) internal wave spectral model. The linear scaling relations and vertical wavenumber dependencies of the GM model are maintained provided the Poisson constant κ0 is equated with the ratio of twice the displacement variance to the vertical correlation scale of the wavefield. Awareness of this Poisson wavefield relation enables higher-order strain statistics to be determined directly from the strain spectrum. Using observations from across the Pacific Ocean, the average Thorpe scale of individual overturning events is found to be nearly equal to the inverse of κ0, the metric of background thermocline distortion. If the fractional occurrence of overturning ϕ is introduced as an additional parameter, a Poisson version of the Gregg–Henyey relationship can be derived. The Poisson constant, buoyancy frequency, and ϕ combine to create a complete parameterization of energy transfer from internal wave scales through the Poisson subrange to dissipation. An awareness of the underlying Poisson structure of the thermocline will hopefully facilitate further improvement in both internal wave spectral models and ocean mixing parameterizations.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Dec 23, 2020

There are no references for this article.