“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

The Physical Basis for Predicting Atlantic Sector Seasonal-to-Interannual Climate Variability *

This paper reviews the observational and theoretical basis for the prediction of seasonal-to-interannual (S/I) climate variability in the Atlantic sector. The emphasis is on the large-scale picture rather than on regional details. The paper is divided into two main parts: a discussion of the predictability of the North Atlantic Oscillation (NAO)—the dominant pattern of variability in the North Atlantic—and a review of the tropical Atlantic prediction problem. The remote effects of El Niño are also mentioned as an important factor in Atlantic climate variability. Only a brief discussion is provided on the subject of South Atlantic climate predictability. Because of its chaotic dynamical nature, the NAO and its related rainfall and temperature variability, while highly significant over Europe and North America, are largely unpredictable. This also affects the predictive skill over the tropical Atlantic, because the NAO interferes with the remote influence of El Niño. That said, there appears to be an insufficiently understood, marginal signal in the NAO behavior that may be predictable and thus useful to certain end users. It is manifested in the deviation of the NAO temporal behavior from first-order autoregressive behavior. Tropical Atlantic climate variability centers on the sensitivity of the marine ITCZ to remote forcing from the equatorial Pacific and interactions with underlying sea surface temperature (SST) variability. Both mechanisms are potentially predictable—that is, given the underlying SSTs and the strength of El Niño, one could determine with a high degree of skill the anomalies in ITCZ position and intensity. However, local SSTs are easily affected by largely unpredictable North and South Atlantic phenomena, such as the NAO. In addition, the local ocean–atmosphere coupling in the Atlantic acts on relatively short time scales. Thus, in reality the level of skill indicated by forced model simulations are difficult to achieve. The use of coupled models may improve the prospects of tropical Atlantic prediction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually