Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Supplying Local Microphysics Parameterizations with Information about Subgrid Variability: Latin Hypercube Sampling

Supplying Local Microphysics Parameterizations with Information about Subgrid Variability: Latin... One problem in computing cloud microphysical processes in coarse-resolution numerical models is that many microphysical processes are nonlinear and small in scale. Consequently, there are inaccuracies if microphysics parameterizations are forced with grid box averages of model fields, such as liquid water content. Rather, the model needs to determine information about subgrid variability and input it into the microphysics parameterization. One possible solution is to assume the shape of the family of probability density functions (PDFs) associated with a grid box and sample it using the Monte Carlo method. In this method, the microphysics subroutine is called repeatedly, once with each sample point. In this way, the Monte Carlo method acts as an interface between the host model’s dynamics and the microphysical parameterization. This avoids the need to rewrite the microphysics subroutines. A difficulty with the Monte Carlo method is that it introduces into the simulation statistical noise or variance, associated with the finite sample size. If the family of PDFs is tractable, one can sample solely from cloud, thereby improving estimates of in-cloud processes. If one wishes to mitigate the noise further, one needs a method for reduction of variance. One such method is Latin hypercube sampling, which reduces noise by spreading out the sample points in a quasi-random fashion. This paper formulates a sampling interface based on the Latin hypercube method. The associated family of PDFs is assumed to be a joint normal/lognormal (i.e., Gaussian/lognormal) mixture. This method of variance reduction has a couple of advantages. First, the method is general: the same interface can be used with a wide variety of microphysical parameterizations for various processes. Second, the method is flexible: one can arbitrarily specify the number of hydrometeor categories and the number of calls to the microphysics parameterization per grid box per time step. This paper performs a preliminary test of Latin hypercube sampling. As a prototypical microphysical formula, this paper uses the Kessler autoconversion formula. The PDFs that are sampled are extracted diagnostically from large-eddy simulations (LES). Both stratocumulus and cumulus boundary layer cases are tested. In this diagnostic test, the Latin hypercube can produce somewhat less noisy time-averaged estimates of Kessler autoconversion than a traditional Monte Carlo estimate, with no additional calls to the microphysics parameterization. However, the instantaneous estimates are no less noisy. This paper leaves unanswered the question of whether the Latin hypercube method will work well in a prognostic, interactive cloud model, but this question will be addressed in a future manuscript. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Supplying Local Microphysics Parameterizations with Information about Subgrid Variability: Latin Hypercube Sampling

Loading next page...
 
/lp/american-meteorological-society/supplying-local-microphysics-parameterizations-with-information-about-sPBXfb0J9K
Publisher
American Meteorological Society
Copyright
Copyright © 2004 American Meteorological Society
ISSN
1520-0469
DOI
10.1175/JAS3624.1
Publisher site
See Article on Publisher Site

Abstract

One problem in computing cloud microphysical processes in coarse-resolution numerical models is that many microphysical processes are nonlinear and small in scale. Consequently, there are inaccuracies if microphysics parameterizations are forced with grid box averages of model fields, such as liquid water content. Rather, the model needs to determine information about subgrid variability and input it into the microphysics parameterization. One possible solution is to assume the shape of the family of probability density functions (PDFs) associated with a grid box and sample it using the Monte Carlo method. In this method, the microphysics subroutine is called repeatedly, once with each sample point. In this way, the Monte Carlo method acts as an interface between the host model’s dynamics and the microphysical parameterization. This avoids the need to rewrite the microphysics subroutines. A difficulty with the Monte Carlo method is that it introduces into the simulation statistical noise or variance, associated with the finite sample size. If the family of PDFs is tractable, one can sample solely from cloud, thereby improving estimates of in-cloud processes. If one wishes to mitigate the noise further, one needs a method for reduction of variance. One such method is Latin hypercube sampling, which reduces noise by spreading out the sample points in a quasi-random fashion. This paper formulates a sampling interface based on the Latin hypercube method. The associated family of PDFs is assumed to be a joint normal/lognormal (i.e., Gaussian/lognormal) mixture. This method of variance reduction has a couple of advantages. First, the method is general: the same interface can be used with a wide variety of microphysical parameterizations for various processes. Second, the method is flexible: one can arbitrarily specify the number of hydrometeor categories and the number of calls to the microphysics parameterization per grid box per time step. This paper performs a preliminary test of Latin hypercube sampling. As a prototypical microphysical formula, this paper uses the Kessler autoconversion formula. The PDFs that are sampled are extracted diagnostically from large-eddy simulations (LES). Both stratocumulus and cumulus boundary layer cases are tested. In this diagnostic test, the Latin hypercube can produce somewhat less noisy time-averaged estimates of Kessler autoconversion than a traditional Monte Carlo estimate, with no additional calls to the microphysics parameterization. However, the instantaneous estimates are no less noisy. This paper leaves unanswered the question of whether the Latin hypercube method will work well in a prognostic, interactive cloud model, but this question will be addressed in a future manuscript.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Oct 12, 2004

References