Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Structure of the Instability Associated with Harmonic Resonance of Short-Crested Waves

Structure of the Instability Associated with Harmonic Resonance of Short-Crested Waves Harmonic resonance of a short-crested water wave field, one of the three-dimensional water waves, is due to the multiple-like structure of the solutions. In a linear description, the harmonic resonance is due to the resonance between the fundamental of the wave and one of its harmonics propagating at the same phase speed for particular wave parameter regions depending on the depth of the fluid, the wave steepness, and the degree of three-dimensionality. Former studies showed that (i) an M th-order harmonic resonance is associated with a superharmonic instability of class I involving a (2 M ++ 2)-mode interaction and (ii) the instability corresponds to one sporadic ““bubble”” of instability. However, these first-step studies dealt with nonbifurcated solutions and thus incomplete solutions. In the present study, the complete set of short-crested wave solutions was computed numerically. It is found that the structure of the solutions is composed of three branches and a turning point that matches two of them. Then, the stability of the bifurcating solutions along their branches was computed. Of interest, another bubble of instability was discovered that is very close to the turning point of the solutions, and the instabilities are no longer sporadic. Harmonic resonances of short-crested water waves are thus associated with two bubbles of instability; the first one is located in a branch in which the turning point is present, and the second one is located in another branch that is continuous in the vicinity of the bifurcation point. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

Structure of the Instability Associated with Harmonic Resonance of Short-Crested Waves

Loading next page...
 
/lp/american-meteorological-society/structure-of-the-instability-associated-with-harmonic-resonance-of-1FidOQaLZZ
Publisher
American Meteorological Society
Copyright
Copyright © 2001 American Meteorological Society
ISSN
1520-0485
DOI
10.1175/1520-0485(2002)032<1331:SOTIAW>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

Harmonic resonance of a short-crested water wave field, one of the three-dimensional water waves, is due to the multiple-like structure of the solutions. In a linear description, the harmonic resonance is due to the resonance between the fundamental of the wave and one of its harmonics propagating at the same phase speed for particular wave parameter regions depending on the depth of the fluid, the wave steepness, and the degree of three-dimensionality. Former studies showed that (i) an M th-order harmonic resonance is associated with a superharmonic instability of class I involving a (2 M ++ 2)-mode interaction and (ii) the instability corresponds to one sporadic ““bubble”” of instability. However, these first-step studies dealt with nonbifurcated solutions and thus incomplete solutions. In the present study, the complete set of short-crested wave solutions was computed numerically. It is found that the structure of the solutions is composed of three branches and a turning point that matches two of them. Then, the stability of the bifurcating solutions along their branches was computed. Of interest, another bubble of instability was discovered that is very close to the turning point of the solutions, and the instabilities are no longer sporadic. Harmonic resonances of short-crested water waves are thus associated with two bubbles of instability; the first one is located in a branch in which the turning point is present, and the second one is located in another branch that is continuous in the vicinity of the bifurcation point.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: May 11, 2001

There are no references for this article.