Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Response of the Inertial Recirculation to Intensified Stratification in a Two-Layer Quasigeostrophic Ocean Circulation Model

Response of the Inertial Recirculation to Intensified Stratification in a Two-Layer... Previous observation and model studies show that the upper-ocean stratification is enhanced under global warming (Capotondi et al.; Cravatte et al.; Deser et al., etc.). The response of the recirculation, which is associated with the western boundary current (WBC) jet extension and significantly increases its transport, to the intensified stratification, is studied in a two-layer quasigeostrophic ocean circulation model. It is found that the barotropic transport of the circulation first increases with stratification but then decreases as a result of saturation of the surface-layer circulation intensity when the stratification exceeds a threshold. PV budget analysis indicates that the saturation is caused by the increased intergyre transport of relative potential vorticity resulting from the intensified variability of the jet location. Both the barotropic instability and bifurcation mechanisms contribute to the intensified variability of the jet location. Because of barotropic instability, eddies are generated in the confluence region of the WBCs and advected eastward, causing the variability of the jet location. With increased stratification, the surface-layer circulation is strengthened and the barotropic instability is intensified. As a result, the surface flow becomes more variable with excessive eddies and intense variability of the jet. With the increasing stratification, three regimes, each marked by its own variation of the jet location, emerge owing to the successive system bifurcations. In the last two regimes, variability of the jet location is further enhanced by frequent switches among the different dynamic states on multidecadal time scales. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

Response of the Inertial Recirculation to Intensified Stratification in a Two-Layer Quasigeostrophic Ocean Circulation Model

Loading next page...
 
/lp/american-meteorological-society/response-of-the-inertial-recirculation-to-intensified-stratification-FiNEU0bx1S

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Meteorological Society
Copyright
Copyright © 2012 American Meteorological Society
ISSN
0022-3670
eISSN
1520-0485
DOI
10.1175/JPO-D-12-0111.1
Publisher site
See Article on Publisher Site

Abstract

Previous observation and model studies show that the upper-ocean stratification is enhanced under global warming (Capotondi et al.; Cravatte et al.; Deser et al., etc.). The response of the recirculation, which is associated with the western boundary current (WBC) jet extension and significantly increases its transport, to the intensified stratification, is studied in a two-layer quasigeostrophic ocean circulation model. It is found that the barotropic transport of the circulation first increases with stratification but then decreases as a result of saturation of the surface-layer circulation intensity when the stratification exceeds a threshold. PV budget analysis indicates that the saturation is caused by the increased intergyre transport of relative potential vorticity resulting from the intensified variability of the jet location. Both the barotropic instability and bifurcation mechanisms contribute to the intensified variability of the jet location. Because of barotropic instability, eddies are generated in the confluence region of the WBCs and advected eastward, causing the variability of the jet location. With increased stratification, the surface-layer circulation is strengthened and the barotropic instability is intensified. As a result, the surface flow becomes more variable with excessive eddies and intense variability of the jet. With the increasing stratification, three regimes, each marked by its own variation of the jet location, emerge owing to the successive system bifurcations. In the last two regimes, variability of the jet location is further enhanced by frequent switches among the different dynamic states on multidecadal time scales.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Jun 22, 2012

There are no references for this article.