Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Foley (2010)
Uncertainty in regional climate modelling: A reviewProgress in Physical Geography, 34
M. Sotillo, A. Ratsimandresy, J. Carretero, A. Bentamy, F. Valero, F. González-Rouco (2005)
A high-resolution 44-year atmospheric hindcast for the Mediterranean Basin: contribution to the regional improvement of global reanalysisClimate Dynamics, 25
J. McGregor, M. Dix (2008)
An Updated Description of the Conformal-Cubic Atmospheric Model
A. Wood, L. Leung, V. Sridhar, D. Lettenmaier (2004)
Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model OutputsClimatic Change, 62
D. Jacob, R. Podzun (1997)
Sensitivity studies with the regional climate model REMOMeteorology and Atmospheric Physics, 63
B. Rockel, A. Will, A. Hense (2008)
The Regional Climate Model COSMO-CLM (CCLM)Meteorologische Zeitschrift, 17
S. Rauscher, J. Pal, N. Diffenbaugh, M. Benedetti (2008)
Future changes in snowmelt‐driven runoff timing over the western USGeophysical Research Letters, 35
R. Weisse, F. Feser (2003)
Evaluation of a method to reduce uncertainty in wind hindcasts performed with regional atmosphere modelsCoastal Engineering, 48
(2003)
Severe summertime f looding in Europe Prediction of regional scenarios and uncertainties for defining European climate change risks and effects : The Prudence project
B. Früh, H. Feldmann, H. Panitz, G. Schädler, D. Jacob, P. Lorenz, K. Keuler (2010)
Determination of precipitation return values in complex terrain and their evaluationJournal of Climate, 23
A. Rinke, K. Dethloff (2000)
On the sensitivity of a regional Arctic climate model to initial and boundary conditionsClimate Research, 14
G. Miguez-Macho, G. Stenchikov, A. Robock (2004)
Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulationsJournal of Geophysical Research, 109
J. Côté, S. Gravel, A. Méthot, A. Patoine, M. Roch, A. Staniforth (1998)
The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and FormulationMonthly Weather Review, 126
S. Uppala, P. Kållberg, A. Simmons, U. Andrae, V. Bechtold, M. Fiorino, J. Gibson, J. Haseler, A. Hernandez, G. Kelly, Xiao‐Ming Li, K. Onogi, S. Saarinen, N. Sokka, R. Allan, E. Andersson, K. Arpe, M. Balmaseda, A. Beljaars, L. Berg, J. Bidlot, N. Bormann, S. Caires, F. Chevallier, A. Dethof, M. Dragosavac, M. Fisher, M. Fuentes, S. Hagemann, E. Holm, B. Hoskins, L. Isaksen, P. Janssen, R. Jenne, A. Mcnally, J. Mahfouf, J. Morcrette, N. Rayner, R. Saunders, P. Simon, A. Sterl, K. Trenberth, A. Untch, D. Vasiljevic, P. Viterbo, J. Woollen (2005)
The ERA‐40 re‐analysisQuarterly Journal of the Royal Meteorological Society, 131
J. Winterfeldt, R. Weisse (2009)
Assessment of Value Added for Surface Marine Wind Speed Obtained from Two Regional Climate ModelsMonthly Weather Review, 137
L. Leung, Y. Qian (2009)
Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate modelGeophysical Research Letters, 36
M. Zahn, H. Storch, S. Bakan (2008)
Climate mode simulation of North Atlantic polar lows in a limited area modelTellus A, 60
C. Frei, C. Schär, D. Lüthi, H. Davies (1998)
Heavy precipitation processes in a warmer climateGeophysical Research Letters, 25
M. Kunz, S. Mohr, M. Rauthe, R. Lux, C. Kottmeier (2010)
Assessment of extreme wind speeds from Regional Climate Models - Part 1: Estimation of return values and their evaluationNatural Hazards and Earth System Sciences, 10
J. Lo, Zong‐Liang Yang, R. Pielke (2008)
Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) modelJournal of Geophysical Research, 113
R. Laprise (2003)
Resolved Scales and Nonlinear Interactions in Limited-Area ModelsJournal of the Atmospheric Sciences, 60
E. Salathe, Richard Steed, C. Mass, P. Zahn (2008)
A High-Resolution Climate Model for the U.S. Pacific Northwest: Mesoscale Feedbacks and Local Responses to Climate Change*Journal of Climate, 21
Joerg Winterfeldt, B. Geyer, R. Weisse (2011)
Using QuikSCAT in the added value assessment of dynamically downscaled wind speedInternational Journal of Climatology, 31
R. Pielke (1984)
Mesoscale Meteorological Modeling
(2004)
Submitted to: Journal of Geophysical Research--Atmospheres Revised
Yuqing Wang, L. Leung, J. McGregor, Dong‐Kyou Lee, Wei‐Chyung Wang, Yihui Ding, F. Kimura, Iprc Soest (2004)
Regional climate modeling: Progress, challenges, and prospectsJournal of the Meteorological Society of Japan, 82
M. Kanamitsu, K. Yoshimura, Yoo-Bin Yhang, Song‐You Hong (2010)
Errors of Interannual Variability and Trend in Dynamical Downscaling of ReanalysisJournal of Geophysical Research, 115
K. Prömmel, B. Geyer, Julie Jones, M. Widmann (2009)
Evaluation of the skill and added value of a reanalysis‐driven regional simulation for Alpine temperatureInternational Journal of Climatology, 30
B. Denis (2001)
Downscaling ability of one-way nested regional climate models: the Big-Brother ExperimentClimate Dynamics, 18
M. Déqué, C. Dreveton, Alain Braun, D. Cariolle (1994)
The ARPEGE/IFS atmosphere model: a contribution to the French community climate modellingClimate Dynamics, 10
F. Feser, R. Weisse (2001)
Multi‐decadal atmospheric modeling for europe yields multi‐purpose dataEos, Transactions American Geophysical Union, 82
F. Feser, H. Storch (2005)
NOTES AND CORRESPONDENCE A Spatial Two-Dimensional Discrete Filter for Limited-Area-Model Evaluation Purposes
Richard Jones, J. Murphy, M. Noguer, A. Keen (1995)
Simulation of climate change over europe using a nested regional‐climate model. I: Assessment of control climate, including sensitivity to location of lateral boundariesQuarterly Journal of the Royal Meteorological Society, 121
J. Christensen, O. Christensen (2003)
Climate modelling: Severe summertime flooding in EuropeNature, 421
F. Giorgi, J. Christensen, M. Hulme, H. Storch, P. Whetton, Richard Jones, L. Mearns, C. Fu, R. Arritt, B. Bates, R. Benestad, G. Boer, A. Buishand, M. Castro, Deliang Chen, W. Cramer, R. Crane, J. Crossly, Martin Dehn, K. Dethloff, J. Dippner, S. Emori, R. Francisco, J. Fyfe, F. Gerstengarbe, W. Gutowski, D. Gyalistras, I. Hanssen‐Bauer, M. Hantel, D. Hassell, D. Heimann, C. Jack, J. Jacobeit, H. Kato, R. Katz, F. Kauker, T. Knutson, M. Lal, C. Landsea, R. Laprise, L. Leung, A. Lynch, W. May, J. McGregor, N. Miller, J. Murphy, J. Ribalaygua, A. Rinke, M. Rummukainen, F. Semazzi, K. Walsh, P. Werner, M. Widmann, R. Wilby, M. Wild, Y. Xue (2001)
Regional Climate Information—Evaluation and Projections
J. Steppeler, G. Doms, U. Schättler, H. Bitzer, A. Gassmann, U. Damrath, G. Gregorič (2003)
Meso-gamma scale forecasts using the nonhydrostatic model LMMeteorology and Atmospheric Physics, 82
M. Zahn, H. Storch (2008)
A long‐term climatology of North Atlantic polar lowsGeophysical Research Letters, 35
H. Feldmann, B. Früh, G. Schädler, H. Panitz, K. Keuler, D. Jacob, P. Lorenz (2008)
Evaluation of the precipitation for South-western Germany from high resolution simulations with regional climate modelsMeteorologische Zeitschrift, 17
J. Côté, J.‐G. Desmarais, S. Gravel, A. Méthot, A. Patoine, M. Roch, A. Staniforth (1998)
The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part II: ResultsMonthly Weather Review, 126
J. Murphy (1999)
An Evaluation of Statistical and Dynamical Techniques for Downscaling Local ClimateJournal of Climate, 12
A. Luca, R. Elía, R. Laprise (2012)
Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observationsClimate Dynamics, 38
F. Feser (2006)
Enhanced Detectability of Added Value in Limited-Area Model Results Separated into Different Spatial ScalesMonthly Weather Review, 134
F. Giorgi, L. Mearns (1999)
Introduction to special section : Regional climate modeling revisitedJournal of Geophysical Research, 104
T. Semmler, D. Jacob (2004)
Modeling extreme precipitation events—a climate change simulation for EuropeGlobal and Planetary Change, 44
H. Storch, H. Langenberg, F. Feser (2000)
A Spectral Nudging Technique for Dynamical Downscaling PurposesMonthly Weather Review, 128
M. Zahn, H. Storch (2010)
Decreased frequency of North Atlantic polar lows associated with future climate warmingNature, 467
Richard Jones, J. Murphy, M. Noguer, A. Keen (1997)
Simulation of climate change over europe using a nested regional‐climate model. II: Comparison of driving and regional model responses to a doubling of carbon dioxideQuarterly Journal of the Royal Meteorological Society, 123
B. Rockel, C. Castro, R. Pielke, H. Storch, G. Leoncini (2008)
Dynamical downscaling: Assessment of model system dependent retained and added variability for two different regional climate modelsJournal of Geophysical Research, 113
R. Weisse, H. Storch, U. Callies, A. Chrastansky, F. Feser, I. Grabemann, H. Günther, A. Pluess, T. Stoye, J. Tellkamp, J. Winterfeldt, K. Woth (2009)
Regional meteorological-marine reanalyses and climate change projections: Results for Northern Europe and potential for coastal and offshore ApplicationsBulletin of the American Meteorological Society, 90
F. Feser, H. Storch (2008)
Regional modelling of the western Pacific typhoon season 2004Meteorologische Zeitschrift, 17
M. Rummukainen (2010)
State‐of‐the‐art with regional climate modelsWiley Interdisciplinary Reviews: Climate Change, 1
An important challenge in current climate modeling is to realistically describe small-scale weather statistics, such as topographic precipitation and coastal wind patterns, or regional phenomena like polar lows. Global climate models simulate atmospheric processes with increasingly higher resolutions, but still regional climate models have a lot of advantages. They consume less computation time because of their limited simulation area and thereby allow for higher resolution both in time and space as well as for longer integration times. Regional climate models can be used for dynamical down-scaling purposes because their output data can be processed to produce higher resolved atmospheric fields, allowing the representation of small-scale processes and a more detailed description of physiographic details (such as mountain ranges, coastal zones, and details of soil properties). However, does higher resolution add value when compared to global model results? Most studies implicitly assume that dynamical downscaling leads to output fields that are superior to the driving global data, but little work has been carried out to substantiate these expectations. Here a series of articles is reviewed that evaluate the benefit of dynamical downscaling by explicitly comparing results of global and regional climate model data to the observations. These studies show that the regional climate model generally performs better for the medium spatial scales, but not always for the larger spatial scales. Regional models can add value, but only for certain variables and locations—particularly those influenced by regional specifics, such as coasts, or mesoscale dynamics, such as polar lows. Therefore, the decision of whether a regional climate model simulation is required depends crucially on the scientific question being addressed.
Bulletin of the American Meteorological Society – American Meteorological Society
Published: Sep 1, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.