Observational Evidence for Reduction of Daily Maximum Temperature by Croplands in the Midwest United States

Observational Evidence for Reduction of Daily Maximum Temperature by Croplands in the Midwest... Climate model simulations have shown that conversion of natural forest vegetation to croplands in the United States cooled climate. The cooling was greater for daily maximum temperature than for daily minimum temperature, resulting in a reduced diurnal temperature range. This paper presents analyses of observed daily maximum and minimum temperatures that are consistent with the climate simulations. Daily maximum temperature in the croplands of the Midwest United States is reduced relative to forested land in the Northeast, resulting in a decreased diurnal temperature range. The cooling is regional rather than local and is likely created by the contrast between extensive cropland in the Midwest and forest in the Northeast. Seasonal patterns of this cooling are correlated with seasonal changes in crop growth. Analyses of historical temperatures since 1900 and reconstructed cropland extent show a temporal correlation between land use and cooling. The cooling created by the forest––cropland contrast is much more prominent now, when much of the Northeast farmland has been abandoned and reforested, than in the early 1900s when farmlands were more extensive in the Northeast. These results show that human uses of land, especially clearing of forest for agriculture and reforestation of abandoned farmland, are an important cause of regional climate change. Analyses of historical temperature records must consider this ““land use”” forcing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Observational Evidence for Reduction of Daily Maximum Temperature by Croplands in the Midwest United States

Loading next page...
 
/lp/american-meteorological-society/observational-evidence-for-reduction-of-daily-maximum-temperature-by-vcwctDFtf9
Publisher site
See Article on Publisher Site

Abstract

Climate model simulations have shown that conversion of natural forest vegetation to croplands in the United States cooled climate. The cooling was greater for daily maximum temperature than for daily minimum temperature, resulting in a reduced diurnal temperature range. This paper presents analyses of observed daily maximum and minimum temperatures that are consistent with the climate simulations. Daily maximum temperature in the croplands of the Midwest United States is reduced relative to forested land in the Northeast, resulting in a decreased diurnal temperature range. The cooling is regional rather than local and is likely created by the contrast between extensive cropland in the Midwest and forest in the Northeast. Seasonal patterns of this cooling are correlated with seasonal changes in crop growth. Analyses of historical temperatures since 1900 and reconstructed cropland extent show a temporal correlation between land use and cooling. The cooling created by the forest––cropland contrast is much more prominent now, when much of the Northeast farmland has been abandoned and reforested, than in the early 1900s when farmlands were more extensive in the Northeast. These results show that human uses of land, especially clearing of forest for agriculture and reforestation of abandoned farmland, are an important cause of regional climate change. Analyses of historical temperature records must consider this ““land use”” forcing.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Dec 7, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off