Access the full text.
Sign up today, get DeepDyve free for 14 days.
Domain-average momentum budgets are examined in several multiday cloud-resolving model simulations of deep tropical convection in realistic shears. The convective eddy momentum tendency F, neglected in many global circulation models, looks broadly similar in two- and three-dimensional simulations. It has a large component in quadrature with the mean wind profile, tending to cause momentum profile features to descend. This component opposes, and exceeds in magnitude, the corresponding large-scale vertical advective tendency, which would tend to make features ascend in convecting regions. The portion of F in phase with the mean wind is isolated by vertically integrating F · u , yielding a kinetic energy tendency that is overwhelmingly negative. The variation of this energy damping with shear flow kinetic energy and convection intensity (measured by rain rate) gives a “cumulus friction” coefficient around −40% to −80% per centimeter of rain in 3D runs. Large scatter reflects the effects of varying convective organization. Two-dimensional runs overestimate this friction coefficient for the υ (out of plane) wind component and underestimate it for the u (in plane) component. Another 2D artifact is that 460-hPa-wavelength shear is essentially undamped, consistent with the descending jets reported by Held et al. in a free-running 2D cloud model.
Journal of the Atmospheric Sciences – American Meteorological Society
Published: Apr 9, 1999
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.