Modeling Topographic Solar Radiation Using GOES Data

Modeling Topographic Solar Radiation Using GOES Data In this paper the authors present an algorithm that combines solar radiation fields derived from Geostationary Operational Environmental Satellite (GOES) observations with digital elevation data to produce topographically varying insolation fields at fine grid spacing. Cloud-modulated irradiances are obtained using hourly 8-km resolution GOES observations. These irradiances are then spatially integrated to the grid spacing of the digital elevation data. The integration accounts for uncertainties in satellite navigation, the limited sensor resolution relative to the hemispheric field of view of a terrain element, and the mismatch between the instantaneous fluxes estimated by GOES observations and the time-integrated quantities typically used in distributed modeling, such as hourly fluxes. The integrated fields are partitioned into direct and diffuse components and then adjusted for the effects of elevation. Lastly, other topographic effects, such as slope orientation, shadowing, sky obstruction, and terrain reflectance are modeled using fields derived from the digital elevation data. The final product is a map of solar radiation that marries coarse-scale variability in insolation caused by clouds with the finescale variability caused by topography. The authors demonstrate the technique for a portion of the Rocky Mountains, using a 90-m digital terrain model covering over 1°° ×× 1°° of latitude and longitude. Lastly, assumptions, limitations, and sources of error in data and algorithms are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology American Meteorological Society

Modeling Topographic Solar Radiation Using GOES Data

Journal of Applied Meteorology, Volume 36 (2) – Nov 7, 1995

Loading next page...
 
/lp/american-meteorological-society/modeling-topographic-solar-radiation-using-goes-data-mWKWUK7obu
Publisher
American Meteorological Society
Copyright
Copyright © 1995 American Meteorological Society
ISSN
1520-0450
D.O.I.
10.1175/1520-0450(1997)036<0141:MTSRUG>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

In this paper the authors present an algorithm that combines solar radiation fields derived from Geostationary Operational Environmental Satellite (GOES) observations with digital elevation data to produce topographically varying insolation fields at fine grid spacing. Cloud-modulated irradiances are obtained using hourly 8-km resolution GOES observations. These irradiances are then spatially integrated to the grid spacing of the digital elevation data. The integration accounts for uncertainties in satellite navigation, the limited sensor resolution relative to the hemispheric field of view of a terrain element, and the mismatch between the instantaneous fluxes estimated by GOES observations and the time-integrated quantities typically used in distributed modeling, such as hourly fluxes. The integrated fields are partitioned into direct and diffuse components and then adjusted for the effects of elevation. Lastly, other topographic effects, such as slope orientation, shadowing, sky obstruction, and terrain reflectance are modeled using fields derived from the digital elevation data. The final product is a map of solar radiation that marries coarse-scale variability in insolation caused by clouds with the finescale variability caused by topography. The authors demonstrate the technique for a portion of the Rocky Mountains, using a 90-m digital terrain model covering over 1°° ×× 1°° of latitude and longitude. Lastly, assumptions, limitations, and sources of error in data and algorithms are discussed.

Journal

Journal of Applied MeteorologyAmerican Meteorological Society

Published: Nov 7, 1995

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off