Modeling Forest Cover Influences on Snow Accumulation, Sublimation, and Melt

Modeling Forest Cover Influences on Snow Accumulation, Sublimation, and Melt A comprehensive, physically based model of snow accumulation, redistribution, sublimation, and melt for open and forested catchments was assembled, based on algorithms derived from hydrological process research in Russia and Canada. The model was used to evaluate the long-term snow dynamics of a forested and an agricultural catchment in northwestern Russia without calibration from snow observations. The model was run with standard meteorological variables for the two catchments, and its results were tested against regular surface observations of snow accumulation throughout the winter and spring period for 17 seasons. The results showed mean errors in comparison to observations of less than 3%% in estimating snow water equivalent during the winter and melt seasons. Snow surface evaporation and blowing snow were found to be small components of the mass balance, but intercepted snow sublimation removed notable amounts of snow over the winter from the forested catchment. Average snow accumulation was 15%% higher in the open catchment, largely due to a lack of intercepted snow sublimation. Melt rates were 23%% higher in the open than in the forest, but the effect on melt duration was suppressed by the smaller premelt accumulation in the forest. Only a moderate sensitivity of snow accumulation to forest leaf area was found, while a substantial variation was observed from season to season with changing weather patterns. This suggests that the ensemble of snow processes is more sensitive to variations in atmospheric processes than in vegetation cover. The success in using algorithms from both Canada and Russia in modeling snow dynamics suggests that there may be a potential for large-scale transferability of the modeling techniques. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Modeling Forest Cover Influences on Snow Accumulation, Sublimation, and Melt

Loading next page...
 
/lp/american-meteorological-society/modeling-forest-cover-influences-on-snow-accumulation-sublimation-and-1CnKQb51kh
Publisher
American Meteorological Society
Copyright
Copyright © 2003 American Meteorological Society
ISSN
1525-7541
D.O.I.
10.1175/1525-7541(2004)005<0785:MFCIOS>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

A comprehensive, physically based model of snow accumulation, redistribution, sublimation, and melt for open and forested catchments was assembled, based on algorithms derived from hydrological process research in Russia and Canada. The model was used to evaluate the long-term snow dynamics of a forested and an agricultural catchment in northwestern Russia without calibration from snow observations. The model was run with standard meteorological variables for the two catchments, and its results were tested against regular surface observations of snow accumulation throughout the winter and spring period for 17 seasons. The results showed mean errors in comparison to observations of less than 3%% in estimating snow water equivalent during the winter and melt seasons. Snow surface evaporation and blowing snow were found to be small components of the mass balance, but intercepted snow sublimation removed notable amounts of snow over the winter from the forested catchment. Average snow accumulation was 15%% higher in the open catchment, largely due to a lack of intercepted snow sublimation. Melt rates were 23%% higher in the open than in the forest, but the effect on melt duration was suppressed by the smaller premelt accumulation in the forest. Only a moderate sensitivity of snow accumulation to forest leaf area was found, while a substantial variation was observed from season to season with changing weather patterns. This suggests that the ensemble of snow processes is more sensitive to variations in atmospheric processes than in vegetation cover. The success in using algorithms from both Canada and Russia in modeling snow dynamics suggests that there may be a potential for large-scale transferability of the modeling techniques.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Dec 1, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off