Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractAn apparent giant wave event having a maximum trough-to-crest height of 21 m and a maximum zero-upcrossing period of 27 s was recorded by a wave buoy at a nearshore location off the southwestern coast of Australia. It appears as a group of waves that are significantly larger both in height and in period than the waves preceding and following them. This paper reports a multifaceted analysis into the plausibility of the event. We first examine the statistics of the event in relation to the rest of the record, where we look at quantities such as maximum-to-significant wave height ratios, ordered crest–trough statistics, and average wave profiles. We then investigate the kinematics of the buoy, where we look at the relationship between the horizontal and vertical displacements of the buoy, and also attempt to numerically reconstruct the giant event using Boussinesq and nonlinear shallow water equations. Additional analyses are performed on other sea states where at least one of the buoy’s accelerometers reached its maximum limit. Our analysis reveals incompatibilities of the event with known behavior of real waves, leading us to conclude that it was not a real wave event. Wave events similar to the one reported in our study have been reported elsewhere and have sometimes been accepted as real occurrences. Our methods of forensically analyzing the giant wave event should be potentially useful for identifying false rogue wave events in these cases.
Journal of Atmospheric and Oceanic Technology – American Meteorological Society
Published: Aug 5, 2022
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.