Lower-Tropospheric Eddy Momentum Fluxes in Idealized Models and Reanalysis Data

Lower-Tropospheric Eddy Momentum Fluxes in Idealized Models and Reanalysis Data AbstractIn Earth’s atmosphere eddy momentum fluxes (EMFs) are largest in the upper troposphere, but EMFs in the lower troposphere, although modest in amplitude, have an intriguing structure. To document this structure, the EMFs in the lower tropospheres of a two-layer quasigeostrophic model, a primitive equation model, and the Southern Hemisphere of a reanalysis dataset are investigated. The lower-tropospheric EMFs are very similar in the cores of the jets in both models and the reanalysis data, with EMF divergence (opposing the upper-tropospheric convergence) due to relatively long waves with slow eastward phase speeds and EMF divergence (as in the upper troposphere) due to shorter waves with faster eastward phase speeds.As the two-layer model is able to capture the EMF divergence by long waves, a qualitative picture of the underlying dynamics is proposed that relies on the negative potential vorticity gradient in the lower layer of the model. Eddies excited by baroclinic instability mix efficiently through a wide region in the lower layer, centered on the latitude of maximum westerlies and encompassing the lower-layer critical latitudes. Near these critical latitudes, the mixing is enhanced, resulting in increased EMF convergence, with compensating EMF divergence in the center of the jet. The EMF convergence at faster phase speeds is due to deep eddies that propagate on the upper-tropospheric potential vorticity gradient. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Lower-Tropospheric Eddy Momentum Fluxes in Idealized Models and Reanalysis Data

Loading next page...
 
/lp/american-meteorological-society/lower-tropospheric-eddy-momentum-fluxes-in-idealized-models-and-nsHGDVNGfq
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0099.1
Publisher site
See Article on Publisher Site

Abstract

AbstractIn Earth’s atmosphere eddy momentum fluxes (EMFs) are largest in the upper troposphere, but EMFs in the lower troposphere, although modest in amplitude, have an intriguing structure. To document this structure, the EMFs in the lower tropospheres of a two-layer quasigeostrophic model, a primitive equation model, and the Southern Hemisphere of a reanalysis dataset are investigated. The lower-tropospheric EMFs are very similar in the cores of the jets in both models and the reanalysis data, with EMF divergence (opposing the upper-tropospheric convergence) due to relatively long waves with slow eastward phase speeds and EMF divergence (as in the upper troposphere) due to shorter waves with faster eastward phase speeds.As the two-layer model is able to capture the EMF divergence by long waves, a qualitative picture of the underlying dynamics is proposed that relies on the negative potential vorticity gradient in the lower layer of the model. Eddies excited by baroclinic instability mix efficiently through a wide region in the lower layer, centered on the latitude of maximum westerlies and encompassing the lower-layer critical latitudes. Near these critical latitudes, the mixing is enhanced, resulting in increased EMF convergence, with compensating EMF divergence in the center of the jet. The EMF convergence at faster phase speeds is due to deep eddies that propagate on the upper-tropospheric potential vorticity gradient.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Nov 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off