Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Ground Fog Detection from Space Based on MODIS Daytime Data—A Feasibility Study

Ground Fog Detection from Space Based on MODIS Daytime Data—A Feasibility Study The distinction made by satellite data between ground fog and low stratus is still an open problem. A proper detection scheme would need to make a determination between low stratus thickness and top height. Based on this information, stratus base height can be computed and compared with terrain height at a specific picture element. In the current paper, a procedure for making the distinction between ground fog and low-level stratus is proposed based on Moderate Resolution Imaging Spectroradiometer (MODIS, flying on board the NASA Terra and Aqua satellites) daytime data for Germany. Stratus thickness is alternatively derived from either empirical relationships or a newly developed retrieval scheme (lookup table approach), which relies on multiband albedo and radiative transfer calculations. A trispectral visible–near-infrared (VIS–NIR) approach has been proven to give the best results for the calculation of geometrical thickness. The comparison of horizontal visibility data from synoptic observing (SYNOP) stations of the German Weather Service and the results of the ground fog detection schemes reveals that the lookup table approach shows the best performance for both a valley fog situation and an extended layer of low stratus with complex local visibility structures. Even if the results are very encouraging probability of detection (POD) = 0.76, relatively high percentage errors and false alarm ratios still occur. Uncertainties in the retrieval scheme are mostly due to possible collocation errors and known problems caused by comparing point and pixel data (time lag between satellite overpass and ground observation, etc.). A careful inspection of the pixels that mainly contribute to the false alarm ratio reveals problems with thin cirrus layers and the fog-edge position of the SYNOP stations. Validation results can be improved by removing these suspicious pixels (e.g., percentage error decreases from 28% to 22%). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Ground Fog Detection from Space Based on MODIS Daytime Data—A Feasibility Study

Loading next page...
 
/lp/american-meteorological-society/ground-fog-detection-from-space-based-on-modis-daytime-data-a-u7niCuSit5

References (60)

Publisher
American Meteorological Society
Copyright
Copyright © 2005 American Meteorological Society
ISSN
1520-0434
DOI
10.1175/WAF886.1
Publisher site
See Article on Publisher Site

Abstract

The distinction made by satellite data between ground fog and low stratus is still an open problem. A proper detection scheme would need to make a determination between low stratus thickness and top height. Based on this information, stratus base height can be computed and compared with terrain height at a specific picture element. In the current paper, a procedure for making the distinction between ground fog and low-level stratus is proposed based on Moderate Resolution Imaging Spectroradiometer (MODIS, flying on board the NASA Terra and Aqua satellites) daytime data for Germany. Stratus thickness is alternatively derived from either empirical relationships or a newly developed retrieval scheme (lookup table approach), which relies on multiband albedo and radiative transfer calculations. A trispectral visible–near-infrared (VIS–NIR) approach has been proven to give the best results for the calculation of geometrical thickness. The comparison of horizontal visibility data from synoptic observing (SYNOP) stations of the German Weather Service and the results of the ground fog detection schemes reveals that the lookup table approach shows the best performance for both a valley fog situation and an extended layer of low stratus with complex local visibility structures. Even if the results are very encouraging probability of detection (POD) = 0.76, relatively high percentage errors and false alarm ratios still occur. Uncertainties in the retrieval scheme are mostly due to possible collocation errors and known problems caused by comparing point and pixel data (time lag between satellite overpass and ground observation, etc.). A careful inspection of the pixels that mainly contribute to the false alarm ratio reveals problems with thin cirrus layers and the fog-edge position of the SYNOP stations. Validation results can be improved by removing these suspicious pixels (e.g., percentage error decreases from 28% to 22%).

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Feb 1, 2005

There are no references for this article.