Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Gravity Wave Generation in Balanced Sheared Flow Revisited

Gravity Wave Generation in Balanced Sheared Flow Revisited AbstractThe generation of internal gravity waves from an initially geostrophically balanced flow is diagnosed in nonhydrostatic numerical simulations of shear instabilities for varied dynamical regimes. A nonlinear decomposition method up to third order in the Rossby number (Ro) is used as the diagnostic tool for a consistent separation of the balanced and unbalanced motions in the presence of their nonlinear coupling. Wave emission is investigated in an Eady-like and a jet-like flow. For the jet-like case, geostrophic and ageostrophic unstable modes are used to initialize the flow in different simulations. Gravity wave emission is in general very weak over a range of values for Ro. At sufficiently high Ro, however, when the condition for symmetric instability is satisfied with negative values of local potential vorticity, significant wave emission is detected even at the lowest order. This is related to the occurrence of fast ageostrophic instability modes, generating a wide spectrum of waves. Thus, gravity waves are excited from the instability of the balanced mode to lowest order only if the condition of symmetric instability is satisfied and ageostrophic unstable modes obtain finite growth rates.Significance StatementWe aim to understand the generation of internal gravity waves in the atmosphere and ocean from a flow field that is initially balanced, i.e., free from any internal gravity waves. To examine this process, we use simulations from idealized numerical models and nonlinear flow decomposition method to identify waves. Our results show that a prominent mechanism by which waves can be generated is related to symmetric or ageostrophic instabilities of the balanced flow possibly occurring during frontogenesis. This process can be a significant mechanism to dissipate the energy of the geostrophic flow in the ocean. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

Gravity Wave Generation in Balanced Sheared Flow Revisited

Loading next page...
 
/lp/american-meteorological-society/gravity-wave-generation-in-balanced-sheared-flow-revisited-sNv1i0bQX5

References (15)

Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0485
eISSN
1520-0485
DOI
10.1175/jpo-d-21-0115.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe generation of internal gravity waves from an initially geostrophically balanced flow is diagnosed in nonhydrostatic numerical simulations of shear instabilities for varied dynamical regimes. A nonlinear decomposition method up to third order in the Rossby number (Ro) is used as the diagnostic tool for a consistent separation of the balanced and unbalanced motions in the presence of their nonlinear coupling. Wave emission is investigated in an Eady-like and a jet-like flow. For the jet-like case, geostrophic and ageostrophic unstable modes are used to initialize the flow in different simulations. Gravity wave emission is in general very weak over a range of values for Ro. At sufficiently high Ro, however, when the condition for symmetric instability is satisfied with negative values of local potential vorticity, significant wave emission is detected even at the lowest order. This is related to the occurrence of fast ageostrophic instability modes, generating a wide spectrum of waves. Thus, gravity waves are excited from the instability of the balanced mode to lowest order only if the condition of symmetric instability is satisfied and ageostrophic unstable modes obtain finite growth rates.Significance StatementWe aim to understand the generation of internal gravity waves in the atmosphere and ocean from a flow field that is initially balanced, i.e., free from any internal gravity waves. To examine this process, we use simulations from idealized numerical models and nonlinear flow decomposition method to identify waves. Our results show that a prominent mechanism by which waves can be generated is related to symmetric or ageostrophic instabilities of the balanced flow possibly occurring during frontogenesis. This process can be a significant mechanism to dissipate the energy of the geostrophic flow in the ocean.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Jul 10, 2022

There are no references for this article.