Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Further Sensitivities of Orographic Precipitation to Terrain Geometry in Idealized Simulations

Further Sensitivities of Orographic Precipitation to Terrain Geometry in Idealized Simulations This study examines how variations to the nondimensional mountain height Ĥ and the horizontal aspect ratio β of a straight ridge and a concave ridge influence orographic precipitation. An idealized three-dimensional model is used to simulate a moist flow impinging upon these two ridges with Ĥ = 0.66–2.0 and β = 1.0–8.0. The concave ridge generates substantially more precipitation than the straight ridge via an established precipitation-enhancing funneling mechanism near the ridge vertex when the flow is unblocked. Based on previous work, it was hypothesized that when the approaching flow becomes blocked, the strength of the precipitation enhancement by the concave ridge relative to the straight ridge becomes negligible. This study reveals that, if Ĥ is sufficiently large to induce flow reversal on the windward slope, then a secondary circulation develops that is strengthened by the concave ridge with a subsequent enhancement of precipitation. It is also shown that the competing effects of the ridge length and width render the strength of the precipitation enhancement largely insensitive to β . A flow regime diagram for the straight ridge and the concave ridge is also constructed to illustrate the sensitivity of the critical Ĥ value for flow regime transition to changes in the terrain geometry; variations to the low-level relative humidity are also explored. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Further Sensitivities of Orographic Precipitation to Terrain Geometry in Idealized Simulations

Loading next page...
 
/lp/american-meteorological-society/further-sensitivities-of-orographic-precipitation-to-terrain-geometry-DAK6j9SJ0A
Publisher
American Meteorological Society
Copyright
Copyright © 2013 American Meteorological Society
ISSN
0022-4928
eISSN
1520-0469
DOI
10.1175/JAS-D-13-0318.1
Publisher site
See Article on Publisher Site

Abstract

This study examines how variations to the nondimensional mountain height Ĥ and the horizontal aspect ratio β of a straight ridge and a concave ridge influence orographic precipitation. An idealized three-dimensional model is used to simulate a moist flow impinging upon these two ridges with Ĥ = 0.66–2.0 and β = 1.0–8.0. The concave ridge generates substantially more precipitation than the straight ridge via an established precipitation-enhancing funneling mechanism near the ridge vertex when the flow is unblocked. Based on previous work, it was hypothesized that when the approaching flow becomes blocked, the strength of the precipitation enhancement by the concave ridge relative to the straight ridge becomes negligible. This study reveals that, if Ĥ is sufficiently large to induce flow reversal on the windward slope, then a secondary circulation develops that is strengthened by the concave ridge with a subsequent enhancement of precipitation. It is also shown that the competing effects of the ridge length and width render the strength of the precipitation enhancement largely insensitive to β . A flow regime diagram for the straight ridge and the concave ridge is also constructed to illustrate the sensitivity of the critical Ĥ value for flow regime transition to changes in the terrain geometry; variations to the low-level relative humidity are also explored.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Oct 2, 2013

References