Access the full text.
Sign up today, get DeepDyve free for 14 days.
This study examines how variations to the nondimensional mountain height Ĥ and the horizontal aspect ratio β of a straight ridge and a concave ridge influence orographic precipitation. An idealized three-dimensional model is used to simulate a moist flow impinging upon these two ridges with Ĥ = 0.66–2.0 and β = 1.0–8.0. The concave ridge generates substantially more precipitation than the straight ridge via an established precipitation-enhancing funneling mechanism near the ridge vertex when the flow is unblocked. Based on previous work, it was hypothesized that when the approaching flow becomes blocked, the strength of the precipitation enhancement by the concave ridge relative to the straight ridge becomes negligible. This study reveals that, if Ĥ is sufficiently large to induce flow reversal on the windward slope, then a secondary circulation develops that is strengthened by the concave ridge with a subsequent enhancement of precipitation. It is also shown that the competing effects of the ridge length and width render the strength of the precipitation enhancement largely insensitive to β . A flow regime diagram for the straight ridge and the concave ridge is also constructed to illustrate the sensitivity of the critical Ĥ value for flow regime transition to changes in the terrain geometry; variations to the low-level relative humidity are also explored.
Journal of the Atmospheric Sciences – American Meteorological Society
Published: Oct 2, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.