Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Estimation of the Effect of Eddies on Coastal El Niño Flows Using Along-Track Satellite Altimeter Data

Estimation of the Effect of Eddies on Coastal El Niño Flows Using Along-Track Satellite Altimeter... Previous work has shown that the El Niño sea level signal leaks through the gappy western equatorial Pacific to the coasts of western and southern Australia. South of about 22°S, in the region of the Leeuwin Current, the amplitude of this El Niño signal falls. Using coastal sea level measurements and along-track altimetry data from the Ocean Topography Experiment (TOPEX)/Poseidon, Jason-1 , and OSTM/ Jason-2 satellites, this study finds that the interannual divergence of the eddy momentum flux D ′ is correlated with the southward along-shelf sea level amplitude decay, consistent with the eddies removing energy from the large-scale sea level signal. The quantity D ′ is also correlated with the interannual flow with a surprisingly short dissipation time scale of only 2 days, much shorter than the interannual time scale. A similar analysis off the western coast of South America, site of the originally named “El Niño” current, was carried out. Interannual sea level decay along the shelf edge is observed, and the interannual southward flow along the shelf edge is found to be highly positively correlated with the along-shelf sea level decay with a dissipation time scale of a few days. Dynamics similar to the Australian case likely apply. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

Estimation of the Effect of Eddies on Coastal El Niño Flows Using Along-Track Satellite Altimeter Data

Loading next page...
 
/lp/american-meteorological-society/estimation-of-the-effect-of-eddies-on-coastal-el-ni-o-flows-using-UOfFbzCFEM

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Meteorological Society
Copyright
Copyright © 2012 American Meteorological Society
ISSN
0022-3670
eISSN
1520-0485
DOI
10.1175/JPO-D-12-0109.1
Publisher site
See Article on Publisher Site

Abstract

Previous work has shown that the El Niño sea level signal leaks through the gappy western equatorial Pacific to the coasts of western and southern Australia. South of about 22°S, in the region of the Leeuwin Current, the amplitude of this El Niño signal falls. Using coastal sea level measurements and along-track altimetry data from the Ocean Topography Experiment (TOPEX)/Poseidon, Jason-1 , and OSTM/ Jason-2 satellites, this study finds that the interannual divergence of the eddy momentum flux D ′ is correlated with the southward along-shelf sea level amplitude decay, consistent with the eddies removing energy from the large-scale sea level signal. The quantity D ′ is also correlated with the interannual flow with a surprisingly short dissipation time scale of only 2 days, much shorter than the interannual time scale. A similar analysis off the western coast of South America, site of the originally named “El Niño” current, was carried out. Interannual sea level decay along the shelf edge is observed, and the interannual southward flow along the shelf edge is found to be highly positively correlated with the along-shelf sea level decay with a dissipation time scale of a few days. Dynamics similar to the Australian case likely apply.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Jun 20, 2012

References