Effects of Clouds, Soil Moisture, Precipitation, and Water Vapor on Diurnal Temperature Range

Effects of Clouds, Soil Moisture, Precipitation, and Water Vapor on Diurnal Temperature Range The diurnal range of surface air temperature (DTR) has decreased worldwide during the last 4––5 decades and changes in cloud cover are often cited as one of the likely causes. To determine how clouds and moisture affect DTR physically on daily bases, the authors analyze the 30-min averaged data of surface meteorological variables and energy fluxes from the the First International Satellite Land Surface Climatology Project Field Experiment and the synoptic weather reports of 1980––1991 from about 6500 stations worldwide. The statistical relationships are also examined more thoroughly in the historical monthly records of DTR, cloud cover, precipitation, and streamflow of this century. It is found that clouds, combined with secondary damping effects from soil moisture and precipitation, can reduce DTR by 25%%––50%% compared with clear-sky days over most land areas; while atmospheric water vapor increases both nighttime and daytime temperatures and has small effects on DTR. Clouds, which largely determine the geographic patterns of DTR, greatly reduce DTR by sharply decreasing surface solar radiation while soil moisture decreases DTR by increasing daytime surface evaporative cooling. Clouds with low bases are most efficient in reducing the daytime maximum temperature and DTR mainly because they are very effective in reflecting the sunlight, while middle and high clouds have only moderate damping effects on DTR. The DTR reduction by clouds is largest in warm and dry seasons such as autumn over northern midlatitudes when latent heat release is limited by the soil moisture content. The net effects of clouds on the nighttime minimum temperature is small except in the winter high latitudes where the greenhouse warming effect of clouds exceeds their solar cooling effect. The historical records of DTR of the twentieth century covary inversely with cloud cover and precipitation on interannual to multidecadal timescales over the United States, Australia, midlatitude Canada, and former U.S.S.R., and up to 80%% of the DTR variance can be explained by the cloud and precipitation records. Given the strong damping effect of clouds on the daytime maximum temperature and DTR, the well-established worldwide asymmetric trends of the daytime and nighttime temperatures and the DTR decreases during the last 4––5 decades are consistent with the reported increasing trends in cloud cover and precipitation over many land areas and support the notion that the hydrologic cycle has intensified. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Effects of Clouds, Soil Moisture, Precipitation, and Water Vapor on Diurnal Temperature Range

Loading next page...
 
/lp/american-meteorological-society/effects-of-clouds-soil-moisture-precipitation-and-water-vapor-on-10Oppqd9No
Publisher site
See Article on Publisher Site

Abstract

The diurnal range of surface air temperature (DTR) has decreased worldwide during the last 4––5 decades and changes in cloud cover are often cited as one of the likely causes. To determine how clouds and moisture affect DTR physically on daily bases, the authors analyze the 30-min averaged data of surface meteorological variables and energy fluxes from the the First International Satellite Land Surface Climatology Project Field Experiment and the synoptic weather reports of 1980––1991 from about 6500 stations worldwide. The statistical relationships are also examined more thoroughly in the historical monthly records of DTR, cloud cover, precipitation, and streamflow of this century. It is found that clouds, combined with secondary damping effects from soil moisture and precipitation, can reduce DTR by 25%%––50%% compared with clear-sky days over most land areas; while atmospheric water vapor increases both nighttime and daytime temperatures and has small effects on DTR. Clouds, which largely determine the geographic patterns of DTR, greatly reduce DTR by sharply decreasing surface solar radiation while soil moisture decreases DTR by increasing daytime surface evaporative cooling. Clouds with low bases are most efficient in reducing the daytime maximum temperature and DTR mainly because they are very effective in reflecting the sunlight, while middle and high clouds have only moderate damping effects on DTR. The DTR reduction by clouds is largest in warm and dry seasons such as autumn over northern midlatitudes when latent heat release is limited by the soil moisture content. The net effects of clouds on the nighttime minimum temperature is small except in the winter high latitudes where the greenhouse warming effect of clouds exceeds their solar cooling effect. The historical records of DTR of the twentieth century covary inversely with cloud cover and precipitation on interannual to multidecadal timescales over the United States, Australia, midlatitude Canada, and former U.S.S.R., and up to 80%% of the DTR variance can be explained by the cloud and precipitation records. Given the strong damping effect of clouds on the daytime maximum temperature and DTR, the well-established worldwide asymmetric trends of the daytime and nighttime temperatures and the DTR decreases during the last 4––5 decades are consistent with the reported increasing trends in cloud cover and precipitation over many land areas and support the notion that the hydrologic cycle has intensified.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Jul 9, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off