Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Dynamical Mechanisms of the 1995 California Floods

Dynamical Mechanisms of the 1995 California Floods The link between El Niño and the California wintertime rainfall has been reported in various studies. During the winter of 1994/95, warm sea surface temperature anomalies (SSTAs) were observed in the central Pacific, and widespread significant flooding occurred in California during January 1995 and March 1995. However, the El Niño––Southern Oscillation alone cannot explain the flooding. In March 1995 California suffered flooding after the warm SSTA over the central Pacific had weakened considerably. During November and December, in spite of El Niño conditions, California was not flooded, and more than two standard deviations above normal SSTA in the North Pacific were observed. A possible link between midlatitude warm SSTA and the timing of the onset of flooding is suspected within the seasonal forecasting community. The climate condition during the northern winter of 1994/95 is described using the National Centers for Environmental Prediction––National Center for Atmospheric Research reanalysis data. Diagnostics show the typical El Niño pattern in the seasonal mean and the link between the position of the jet exit and the flooding over California on the intraseasonal timescale. The relationship among California floods, the Pacific jet, tropical rainfall, and SSTA is inferred from results of general circulation model (GCM) experiments with various SSTAs. The results show that the rainfall over California is associated with an eastward extension of the Pacific jet, which itself is associated with enhanced tropical convection over the warm SSTA in the central Pacific. The GCM experiments also show that rainfall over the Indian Ocean can contribute to the weakening of the Pacific jet and to dryness over California. The GCM experiments did not show significant impact of North Pacific SSTA, either upon the Pacific jet or upon rainfall over California. The agreement with diagnostics results is discussed. GCM experiments suggest the link between the tropical intraseasonal oscillation (TIO) and the flooding in March in California, since there is a strong TIO component in rainfall over the Indian Ocean. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Dynamical Mechanisms of the 1995 California Floods

Journal of Climate , Volume 12 (11) – May 30, 1997

Loading next page...
 
/lp/american-meteorological-society/dynamical-mechanisms-of-the-1995-california-floods-sae0JPboDl
Publisher
American Meteorological Society
Copyright
Copyright © 1997 American Meteorological Society
ISSN
1520-0442
DOI
10.1175/1520-0442(1999)012<3220:DMOTCF>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

The link between El Niño and the California wintertime rainfall has been reported in various studies. During the winter of 1994/95, warm sea surface temperature anomalies (SSTAs) were observed in the central Pacific, and widespread significant flooding occurred in California during January 1995 and March 1995. However, the El Niño––Southern Oscillation alone cannot explain the flooding. In March 1995 California suffered flooding after the warm SSTA over the central Pacific had weakened considerably. During November and December, in spite of El Niño conditions, California was not flooded, and more than two standard deviations above normal SSTA in the North Pacific were observed. A possible link between midlatitude warm SSTA and the timing of the onset of flooding is suspected within the seasonal forecasting community. The climate condition during the northern winter of 1994/95 is described using the National Centers for Environmental Prediction––National Center for Atmospheric Research reanalysis data. Diagnostics show the typical El Niño pattern in the seasonal mean and the link between the position of the jet exit and the flooding over California on the intraseasonal timescale. The relationship among California floods, the Pacific jet, tropical rainfall, and SSTA is inferred from results of general circulation model (GCM) experiments with various SSTAs. The results show that the rainfall over California is associated with an eastward extension of the Pacific jet, which itself is associated with enhanced tropical convection over the warm SSTA in the central Pacific. The GCM experiments also show that rainfall over the Indian Ocean can contribute to the weakening of the Pacific jet and to dryness over California. The GCM experiments did not show significant impact of North Pacific SSTA, either upon the Pacific jet or upon rainfall over California. The agreement with diagnostics results is discussed. GCM experiments suggest the link between the tropical intraseasonal oscillation (TIO) and the flooding in March in California, since there is a strong TIO component in rainfall over the Indian Ocean.

Journal

Journal of ClimateAmerican Meteorological Society

Published: May 30, 1997

There are no references for this article.