Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Deep Convective System Evolution over Africa and the Tropical Atlantic

Deep Convective System Evolution over Africa and the Tropical Atlantic In the tropical African and neighboring Atlantic region there is a strong contrast in the properties of deep convection between land and ocean. Here, satellite radar observations are used to produce a composite picture of the life cycle of convection in these two regions. Estimates of the broadband thermal flux from the geostationary Meteosat-8 satellite are used to identify and track organized convective systems over their life cycle. The evolution of the system size and vertical extent are used to define five life cycle stages (warm and cold developing, mature, cold and warm dissipating), providing the basis for the composite analysis of the system evolution. The tracked systems are matched to overpasses of the Tropical Rainfall Measuring Mission satellite, and a composite picture of the evolution of various radar and lightning characteristics is built up. The results suggest a fundamental difference in the convective life cycle between land and ocean. African storms evolve from convectively active systems with frequent lightning in their developing stages to more stratiform conditions as they dissipate. Over the Atlantic, the convective fraction remains essentially constant into the dissipating stages, and lightning occurrence peaks late in the life cycle. This behavior is consistent with differences in convective sustainability in land and ocean regions as proposed in previous studies. The area expansion rate during the developing stages of convection is used to provide an estimate of the intensity of convection. Reasonable correlations are found between this index and the convective system lifetime, size, and depth. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Deep Convective System Evolution over Africa and the Tropical Atlantic

Journal of Climate , Volume 20 (20) – Jun 27, 2006

Loading next page...
 
/lp/american-meteorological-society/deep-convective-system-evolution-over-africa-and-the-tropical-atlantic-0PH54JudJx

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Meteorological Society
Copyright
Copyright © 2006 American Meteorological Society
ISSN
1520-0442
DOI
10.1175/JCLI4297.1
Publisher site
See Article on Publisher Site

Abstract

In the tropical African and neighboring Atlantic region there is a strong contrast in the properties of deep convection between land and ocean. Here, satellite radar observations are used to produce a composite picture of the life cycle of convection in these two regions. Estimates of the broadband thermal flux from the geostationary Meteosat-8 satellite are used to identify and track organized convective systems over their life cycle. The evolution of the system size and vertical extent are used to define five life cycle stages (warm and cold developing, mature, cold and warm dissipating), providing the basis for the composite analysis of the system evolution. The tracked systems are matched to overpasses of the Tropical Rainfall Measuring Mission satellite, and a composite picture of the evolution of various radar and lightning characteristics is built up. The results suggest a fundamental difference in the convective life cycle between land and ocean. African storms evolve from convectively active systems with frequent lightning in their developing stages to more stratiform conditions as they dissipate. Over the Atlantic, the convective fraction remains essentially constant into the dissipating stages, and lightning occurrence peaks late in the life cycle. This behavior is consistent with differences in convective sustainability in land and ocean regions as proposed in previous studies. The area expansion rate during the developing stages of convection is used to provide an estimate of the intensity of convection. Reasonable correlations are found between this index and the convective system lifetime, size, and depth.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Jun 27, 2006

References