Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Comparison of the Analyses and Forecasts of a Tornadic Supercell Storm from Assimilating Phased-Array Radar and WSR-88D Observations

Comparison of the Analyses and Forecasts of a Tornadic Supercell Storm from Assimilating... AbstractNOAA’s National Severe Storms Laboratory is actively developing phased-array radar (PAR) technology, a potential next-generation weather radar, to replace the current operational WSR-88D radars. One unique feature of PAR is its rapid scanning capability, which is at least 4–5 times faster than the scanning rate of WSR-88D. To explore the impact of such high-frequency PAR observations compared with traditional WSR-88D on severe weather forecasting, several storm-scale data assimilation and forecast experiments are conducted. Reflectivity and radial velocity observations from the 22 May 2011 Ada, Oklahoma, tornadic supercell storm are assimilated over a 45-min period using observations from the experimental PAR located in Norman, Oklahoma, and the operational WSR-88D radar at Oklahoma City, Oklahoma. The radar observations are assimilated into the ARPS model within a heterogeneous mesoscale environment and 1-h ensemble forecasts are generated from analyses every 15 min. With a 30-min assimilation period, the PAR experiment is able to analyze more realistic storm structures, resulting in higher skill scores and higher probabilities of low-level vorticity that align better with the locations of radar-derived rotation compared with the WSR-88D experiment. Assimilation of PAR observations for a longer 45-min time period generates similar forecasts compared to assimilating WSR-88D observations, indicating that the advantage of rapid-scan PAR is more noticeable over a shorter 30-min assimilation period. An additional experiment reveals that the improved accuracy from the PAR experiment over a shorter assimilation period is mainly due to its high-temporal-frequency sampling capability. These results highlight the benefit of PAR’s rapid-scan capability in storm-scale modeling that can potentially extend severe weather warning lead times. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Comparison of the Analyses and Forecasts of a Tornadic Supercell Storm from Assimilating Phased-Array Radar and WSR-88D Observations

Loading next page...
 
/lp/american-meteorological-society/comparison-of-the-analyses-and-forecasts-of-a-tornadic-supercell-storm-N7REJ8fkQz

References (88)

Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
eISSN
1520-0434
DOI
10.1175/WAF-D-16-0159.1
Publisher site
See Article on Publisher Site

Abstract

AbstractNOAA’s National Severe Storms Laboratory is actively developing phased-array radar (PAR) technology, a potential next-generation weather radar, to replace the current operational WSR-88D radars. One unique feature of PAR is its rapid scanning capability, which is at least 4–5 times faster than the scanning rate of WSR-88D. To explore the impact of such high-frequency PAR observations compared with traditional WSR-88D on severe weather forecasting, several storm-scale data assimilation and forecast experiments are conducted. Reflectivity and radial velocity observations from the 22 May 2011 Ada, Oklahoma, tornadic supercell storm are assimilated over a 45-min period using observations from the experimental PAR located in Norman, Oklahoma, and the operational WSR-88D radar at Oklahoma City, Oklahoma. The radar observations are assimilated into the ARPS model within a heterogeneous mesoscale environment and 1-h ensemble forecasts are generated from analyses every 15 min. With a 30-min assimilation period, the PAR experiment is able to analyze more realistic storm structures, resulting in higher skill scores and higher probabilities of low-level vorticity that align better with the locations of radar-derived rotation compared with the WSR-88D experiment. Assimilation of PAR observations for a longer 45-min time period generates similar forecasts compared to assimilating WSR-88D observations, indicating that the advantage of rapid-scan PAR is more noticeable over a shorter 30-min assimilation period. An additional experiment reveals that the improved accuracy from the PAR experiment over a shorter assimilation period is mainly due to its high-temporal-frequency sampling capability. These results highlight the benefit of PAR’s rapid-scan capability in storm-scale modeling that can potentially extend severe weather warning lead times.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Aug 1, 2017

There are no references for this article.