“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

Clouds as Seen by Satellite Sounders (3I) and Imagers (ISCCP). Part II: A New Approach for Cloud Parameter Determination in the 3I Algorithms

First comparisons of improved initialization inversion (3I) cloud parameters determined from TIROS-N Operational Vertical Sounder observations with time––space-collocated clouds from the recently reprocessed International Satellite Cloud Climatology Project (ISCCP) dataset have shown a reasonable agreement between all cloud types, with exception of the stratocumulus regions off the western coasts. Here, 3I clouds were found systematically thinner and higher than ISCCP clouds. These results have initiated a careful investigation of the methods used to convert measurements from IR sounders into cloud parameters. All existing methods get very sensitive to the chosen temperature profile toward lower cloud heights, due to a denominator approaching zero. This leads to a bias like the one seen in the comparison with ISCCP. Therefore, a new 3I cloud scheme has been developed, based on a weighted- χχ 2 method, which calculates the effective cloud amount from the CO 2 -band radiances, but weighted differently according to the effect of the brightness temperature uncertainty within an air mass on these radiances at the various cloud levels. This physically much more correct method led to unbiased 3I cloud parameters for homogeneous cloud types. The ISCCP comparison agrees much better now, especially in the stratocumulus regions where the cloud type matching improved from about 50%% to 75%%. In 1°° grid boxes covered uniformly with the same ISCCP cloud type, the matching reaches even 87%%. Remaining discrepancies in cloud classification can be explained by partly cloudy fields and differences in temperature profiles and cloud detection. The weighted- χχ 2 method can be used in other IR sounder inversion algorithms, if the empirical weights, taking care of the effect of temperature profile uncertainties on the difference between clear sky and cloudy radiances for different cloud levels and spectral channels, have been reevaluated so that they can be calculated automatically by the corresponding inversion algorithm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually