Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Chaotic Advection in an Archipelago *

Chaotic Advection in an Archipelago * Techniques from dynamical systems theory have been applied to study horizontal stirring of fluid in the Philippine Archipelago. The authors’ analysis is based on velocity fields produced by two high-resolution (3 and 6 km) numerical models. Particular attention is paid to identifying robust surface flow patterns and associating them with dominant Lagrangian coherent structures (LCSs). A recurrent wind-driven dipole in the lee of the coastline is considered in detail. The associated LCSs form a template for stirring, exchange, and biological transport in and around the dipole. Chaotic advection is argued to provide a relevant framework for interpreting mesoscale horizontal stirring processes in an archipelago as a whole. Implications for the formation of filaments, the production of tracer variance, and the scale at which stirring leads to mixing are discussed in connection with an observed temperature record. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

Loading next page...
 
/lp/american-meteorological-society/chaotic-advection-in-an-archipelago-WZEoFvjU1N

References (44)

Publisher
American Meteorological Society
Copyright
Copyright © 2009 American Meteorological Society
ISSN
1520-0485
DOI
10.1175/2010JPO4336.1
Publisher site
See Article on Publisher Site

Abstract

Techniques from dynamical systems theory have been applied to study horizontal stirring of fluid in the Philippine Archipelago. The authors’ analysis is based on velocity fields produced by two high-resolution (3 and 6 km) numerical models. Particular attention is paid to identifying robust surface flow patterns and associating them with dominant Lagrangian coherent structures (LCSs). A recurrent wind-driven dipole in the lee of the coastline is considered in detail. The associated LCSs form a template for stirring, exchange, and biological transport in and around the dipole. Chaotic advection is argued to provide a relevant framework for interpreting mesoscale horizontal stirring processes in an archipelago as a whole. Implications for the formation of filaments, the production of tracer variance, and the scale at which stirring leads to mixing are discussed in connection with an observed temperature record.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Aug 18, 2009

There are no references for this article.