Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Calibration of ECMWF Seasonal Ensemble Precipitation Reforecasts in Java (Indonesia) Using Bias-Corrected Precipitation and Climate Indices

Calibration of ECMWF Seasonal Ensemble Precipitation Reforecasts in Java (Indonesia) Using... AbstractThe seasonal precipitation forecast is one of the essential inputs for economic and agricultural activities and has significant impact on decision-making. Large-scale modes of climate variability have strong relationships with seasonal rainfall in Java and are natural candidates for use as potential predictors in a statistical postprocessing application. We explore whether using climate indices as additional predictors in the statistical postprocessing of ECMWF Seasonal Forecast System 5 (SEAS5) precipitation can improve skill. We use parametric statistical postprocessing by applying a logistic distribution-based ensemble model output statistics (EMOS) technique. We add a variety of potential predictors in the analysis, namely SEAS5 raw and empirical quantile mapping (EQM) bias-corrected precipitation, Niño-3.4 index, dipole mode index (DMI), Madden–Julian oscillation (MJO) indices, sea surface temperature (SST) around Java, and several other predictors. We analyze the period of 1981–2010, focusing on July, August, September, and October. We use the continuous ranked probability skill score (CRPSS) and Brier skill score (BSS) in a comparative verification of raw, EQM, and EMOS seasonal precipitation forecasts. We have found that it is essential to use EQM-corrected precipitation as a predictor instead of raw precipitation in the latter. Besides, Niño-3.4 and DMI forecasts are not needed as extra predictors to improve monthly precipitation forecasts for the first lead month, except for September. However, for somewhat longer lead months, in September and October when there is more skill than climatology, the model that includes only Niño-3.4 and DMI forecasts as potential predictors performs about the same compared to the model that uses only EQM-corrected precipitation as a predictor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Calibration of ECMWF Seasonal Ensemble Precipitation Reforecasts in Java (Indonesia) Using Bias-Corrected Precipitation and Climate Indices

Loading next page...
 
/lp/american-meteorological-society/calibration-of-ecmwf-seasonal-ensemble-precipitation-reforecasts-in-Q1pzV59W0B
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
eISSN
1520-0434
DOI
10.1175/WAF-D-20-0124.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe seasonal precipitation forecast is one of the essential inputs for economic and agricultural activities and has significant impact on decision-making. Large-scale modes of climate variability have strong relationships with seasonal rainfall in Java and are natural candidates for use as potential predictors in a statistical postprocessing application. We explore whether using climate indices as additional predictors in the statistical postprocessing of ECMWF Seasonal Forecast System 5 (SEAS5) precipitation can improve skill. We use parametric statistical postprocessing by applying a logistic distribution-based ensemble model output statistics (EMOS) technique. We add a variety of potential predictors in the analysis, namely SEAS5 raw and empirical quantile mapping (EQM) bias-corrected precipitation, Niño-3.4 index, dipole mode index (DMI), Madden–Julian oscillation (MJO) indices, sea surface temperature (SST) around Java, and several other predictors. We analyze the period of 1981–2010, focusing on July, August, September, and October. We use the continuous ranked probability skill score (CRPSS) and Brier skill score (BSS) in a comparative verification of raw, EQM, and EMOS seasonal precipitation forecasts. We have found that it is essential to use EQM-corrected precipitation as a predictor instead of raw precipitation in the latter. Besides, Niño-3.4 and DMI forecasts are not needed as extra predictors to improve monthly precipitation forecasts for the first lead month, except for September. However, for somewhat longer lead months, in September and October when there is more skill than climatology, the model that includes only Niño-3.4 and DMI forecasts as potential predictors performs about the same compared to the model that uses only EQM-corrected precipitation as a predictor.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Aug 7, 2021

References