Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractDirectly assimilating microwave radiances over land, snow, and sea ice remains a significant challenge for data assimilation systems. These data assimilation systems are critical to the success of global numerical weather prediction systems including the Global Earth Observing System–Atmospheric Data Assimilation System (GEOS-ADAS). Extending more surface sensitive microwave channels over land, snow, and ice could provide a needed source of data for numerical weather prediction particularly in the planetary boundary layer (PBL). Unfortunately, the accuracy of emissivity models currently available within the GEOS-ADAS along with other data assimilation systems are insufficient to simulate and assimilate radiances. Recently, Munchak et al. published a 5-yr climatological database for retrieved microwave emissivity from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) aboard the GPM mission. In this work the database is utilized by modifying the GEOS-ADAS to use this emissivity database in place of the default emissivity value available in the Community Radiative Transfer Model (CRTM), which is the fast radiative transfer model used by the GEOS-ADAS. As a first step, the GEOS-ADAS is run in a so-called stand-alone mode to simulate radiances from GMI using the default CRTM emissivity, and replacing the default CRTM emissivity models with values from Munchak et al. The simulated GMI observations using Munchak et al. agree more closely with observations from GMI. These results are presented along with a discussion of the implication for GMI observations within the GEOS-ADAS.
Journal of Atmospheric and Oceanic Technology – American Meteorological Society
Published: Oct 23, 2022
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.