Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Assessment of Retrieved GMI Emissivity over Land, Snow, and Sea Ice in the GEOS System

Assessment of Retrieved GMI Emissivity over Land, Snow, and Sea Ice in the GEOS System AbstractDirectly assimilating microwave radiances over land, snow, and sea ice remains a significant challenge for data assimilation systems. These data assimilation systems are critical to the success of global numerical weather prediction systems including the Global Earth Observing System–Atmospheric Data Assimilation System (GEOS-ADAS). Extending more surface sensitive microwave channels over land, snow, and ice could provide a needed source of data for numerical weather prediction particularly in the planetary boundary layer (PBL). Unfortunately, the accuracy of emissivity models currently available within the GEOS-ADAS along with other data assimilation systems are insufficient to simulate and assimilate radiances. Recently, Munchak et al. published a 5-yr climatological database for retrieved microwave emissivity from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) aboard the GPM mission. In this work the database is utilized by modifying the GEOS-ADAS to use this emissivity database in place of the default emissivity value available in the Community Radiative Transfer Model (CRTM), which is the fast radiative transfer model used by the GEOS-ADAS. As a first step, the GEOS-ADAS is run in a so-called stand-alone mode to simulate radiances from GMI using the default CRTM emissivity, and replacing the default CRTM emissivity models with values from Munchak et al. The simulated GMI observations using Munchak et al. agree more closely with observations from GMI. These results are presented along with a discussion of the implication for GMI observations within the GEOS-ADAS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

Assessment of Retrieved GMI Emissivity over Land, Snow, and Sea Ice in the GEOS System

Loading next page...
 
/lp/american-meteorological-society/assessment-of-retrieved-gmi-emissivity-over-land-snow-and-sea-ice-in-1lxNnC3i9L
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
eISSN
1520-0426
DOI
10.1175/jtech-d-21-0187.1
Publisher site
See Article on Publisher Site

Abstract

AbstractDirectly assimilating microwave radiances over land, snow, and sea ice remains a significant challenge for data assimilation systems. These data assimilation systems are critical to the success of global numerical weather prediction systems including the Global Earth Observing System–Atmospheric Data Assimilation System (GEOS-ADAS). Extending more surface sensitive microwave channels over land, snow, and ice could provide a needed source of data for numerical weather prediction particularly in the planetary boundary layer (PBL). Unfortunately, the accuracy of emissivity models currently available within the GEOS-ADAS along with other data assimilation systems are insufficient to simulate and assimilate radiances. Recently, Munchak et al. published a 5-yr climatological database for retrieved microwave emissivity from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) aboard the GPM mission. In this work the database is utilized by modifying the GEOS-ADAS to use this emissivity database in place of the default emissivity value available in the Community Radiative Transfer Model (CRTM), which is the fast radiative transfer model used by the GEOS-ADAS. As a first step, the GEOS-ADAS is run in a so-called stand-alone mode to simulate radiances from GMI using the default CRTM emissivity, and replacing the default CRTM emissivity models with values from Munchak et al. The simulated GMI observations using Munchak et al. agree more closely with observations from GMI. These results are presented along with a discussion of the implication for GMI observations within the GEOS-ADAS.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Oct 23, 2022

References