Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Application of Cluster Analysis to Climate Model Performance Metrics

Application of Cluster Analysis to Climate Model Performance Metrics The overall performance of general circulation models is often investigated on the basis of the synthesis of a number of scalar performance metrics of individual models that measure the reproducibility of diverse aspects of the climate. Because of physical and dynamic constraints governing the climate, a model’s performance in simulating a certain aspect of the climate is sometimes related closely to that in simulating another aspect, which results in significant intermodel correlation between performance metrics. Numerous metrics and intermodel correlations may cause a problem in understanding the evaluation and synthesizing the metrics. One possible way to alleviate this problem is to group the correlated metrics beforehand. This study attempts to use simple cluster analysis to group 43 performance metrics. Two clustering methods, the K -means and the Ward methods, yield considerably similar clustering results, and several aspects of the results are found to be physically and dynamically reasonable. Furthermore, the intermodel correlation between the cluster averages is considerably lower than that between the metrics. These results suggest that the cluster analysis is helpful in obtaining the appropriate grouping. Applications of the clustering results are also discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Loading next page...
 
/lp/american-meteorological-society/application-of-cluster-analysis-to-climate-model-performance-metrics-TZy6Rig3Zz

References (25)

Publisher
American Meteorological Society
Copyright
Copyright © 2010 American Meteorological Society
ISSN
1558-8432
DOI
10.1175/2011JAMC2643.1
Publisher site
See Article on Publisher Site

Abstract

The overall performance of general circulation models is often investigated on the basis of the synthesis of a number of scalar performance metrics of individual models that measure the reproducibility of diverse aspects of the climate. Because of physical and dynamic constraints governing the climate, a model’s performance in simulating a certain aspect of the climate is sometimes related closely to that in simulating another aspect, which results in significant intermodel correlation between performance metrics. Numerous metrics and intermodel correlations may cause a problem in understanding the evaluation and synthesizing the metrics. One possible way to alleviate this problem is to group the correlated metrics beforehand. This study attempts to use simple cluster analysis to group 43 performance metrics. Two clustering methods, the K -means and the Ward methods, yield considerably similar clustering results, and several aspects of the results are found to be physically and dynamically reasonable. Furthermore, the intermodel correlation between the cluster averages is considerably lower than that between the metrics. These results suggest that the cluster analysis is helpful in obtaining the appropriate grouping. Applications of the clustering results are also discussed.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Aug 31, 2010

There are no references for this article.