Access the full text.
Sign up today, get DeepDyve free for 14 days.
A box model of the thermohaline circulation with mixed boundary conditions in which advective processes are incorporated via an explicit time delay mechanism is considered. The pipes that connect the subtropical and subpolar boxes have a finite volume and do not interact with the atmosphere or with the rest of the ocean except for channeling fluxes between the subtropical and subpolar regions. The configuration can be reduced to a two-box model, which, unlike the traditional Stommel model, incorporates finite-time advective processes. It is found that including a time lag leaves the haline dominant steady state stable, but the thermally dominant steady state, which is stable in Stommel's model, can have an oscillatory instability. However, this instability does not lead to sustained oscillations. Instead, it simply makes the circulation cross over to the stable haline dominant pattern. Even in part of the parameter range for which the thermally dominant state remains linearly stable, the time lag leads to a finite-amplitude instability so that a relatively small——but not infinitesimal——perturbation about the thermal state can switch the circulation to the haline state.
Journal of Physical Oceanography – American Meteorological Society
Published: Jan 14, 2000
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.