Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Adjustment of the Ventilated Thermocline **

Adjustment of the Ventilated Thermocline ** The time dependence of the ventilated thermocline is examined via analytical and numerical means. The original Henderschott model is modified such that the outcrops all occur on the same geopotential surface, rather than at staggered geopotential surfaces. This model has the advantage that the ocean interior can be ventilated directly by the Sverdrup flow, rather than by western boundary processes. The propagation of disturbances governed by linearized forms of the three-layer or four-layer modified Henderschott model, nonlinear solutions of the full modified Henderschott model, and numerical solutions of the planetary geostrophic equations are considered. Low-frequency disturbances are predicted by the linear models to move on characteristics jointly set by advection and wave dynamics. It is shown that perturbations due to wind stress anomalies project strongly onto the first mode and propagate westward similarly to the classical first baroclinic Rossby mode. They do not experience much interaction with the mean flow (the so-called non-Doppler effect). On the other hand, perturbations generated by buoyancy anomalies have strong projections onto the second or third modes, and propagate along pathways very close to the mean circulation. Their speed is somewhat slower than the current speed, however. These properties appear in the linearized and simplified nonlinear models and their occurrence in planetary geostrophic results argues the relevance of the Henderschott model. Also, these properties are consistent with results from other studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

Adjustment of the Ventilated Thermocline **

Loading next page...
 
/lp/american-meteorological-society/adjustment-of-the-ventilated-thermocline-UHWqUdNr7Y
Publisher
American Meteorological Society
Copyright
Copyright © 1999 American Meteorological Society
ISSN
1520-0485
DOI
10.1175/1520-0485(2001)031<1676:AOTVT>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

The time dependence of the ventilated thermocline is examined via analytical and numerical means. The original Henderschott model is modified such that the outcrops all occur on the same geopotential surface, rather than at staggered geopotential surfaces. This model has the advantage that the ocean interior can be ventilated directly by the Sverdrup flow, rather than by western boundary processes. The propagation of disturbances governed by linearized forms of the three-layer or four-layer modified Henderschott model, nonlinear solutions of the full modified Henderschott model, and numerical solutions of the planetary geostrophic equations are considered. Low-frequency disturbances are predicted by the linear models to move on characteristics jointly set by advection and wave dynamics. It is shown that perturbations due to wind stress anomalies project strongly onto the first mode and propagate westward similarly to the classical first baroclinic Rossby mode. They do not experience much interaction with the mean flow (the so-called non-Doppler effect). On the other hand, perturbations generated by buoyancy anomalies have strong projections onto the second or third modes, and propagate along pathways very close to the mean circulation. Their speed is somewhat slower than the current speed, however. These properties appear in the linearized and simplified nonlinear models and their occurrence in planetary geostrophic results argues the relevance of the Henderschott model. Also, these properties are consistent with results from other studies.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: May 11, 1999

There are no references for this article.