A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance

A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance The energy exchange, evapotranspiration, and carbon exchange by plant canopies depend on leaf stomatal control. The treatment of this control has been required by land components of climate and carbon models. Physiological models can be used to simulate the responses of stomatal conductance to changes in atmospheric and soil environments. Big-leaf models that treat a canopy as a single leaf tend to overestimate fluxes of CO 2 and water vapor. Models that differentiate between sunlit and shaded leaves largely overcome these problems. A one-layered, two-big-leaf submodel for photosynthesis, stomatal conductance, leaf temperature, and energy fluxes is presented in this paper. It includes 1) an improved two stream approximation model of radiation transfer of the canopy, with attention to singularities in its solution and with separate integrations of radiation absorption by sunlit and shaded fractions of canopy; 2) a photosynthesis–stomatal conductance model for sunlit and shaded leaves separately, and for the simultaneous transfers of CO 2 and water vapor into and out of the leaf—leaf physiological properties (i.e., leaf nitrogen concentration, maximum potential electron transport rate, and hence photosynthetic capacity) vary throughout the plant canopy in response to the radiation–weight time-mean profile of photosynthetically active radiation (PAR), and the soil water limitation is applied to both maximum rates of leaf carbon uptake by Rubisco and electron transport, and the model scales up from leaf to canopy separately for all sunlit and shaded leaves; 3) a well-built quasi-Newton–Raphson method for simultaneous solution of temperatures of the sunlit and shaded leaves. The model was incorporated into the Common Land Model (CLM) and is denoted CLM 2L. It was driven with observational atmospheric forcing from two forest sites Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) and Boreal Ecosystem–Atmosphere Study (BOREAS) for 2 yr of simulation. The simulated fluxes by CLM 2L were compared with the observations, and with the results by the CLM with a single big-leaf scheme (CLM 1L) and by the CLM with the assimilation–stomatal conductance scheme of NCAR Land Surface Model (LSM). The results showed that CLM 2L was an improvement compared to the CLM 1L and the CLM for the test cases of tropical evergreen broadleaf land cover and coniferous boreal forest. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance

Loading next page...
 
/lp/american-meteorological-society/a-two-big-leaf-model-for-canopy-temperature-photosynthesis-and-00upNP0efi
Publisher
American Meteorological Society
Copyright
Copyright © 2003 American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

The energy exchange, evapotranspiration, and carbon exchange by plant canopies depend on leaf stomatal control. The treatment of this control has been required by land components of climate and carbon models. Physiological models can be used to simulate the responses of stomatal conductance to changes in atmospheric and soil environments. Big-leaf models that treat a canopy as a single leaf tend to overestimate fluxes of CO 2 and water vapor. Models that differentiate between sunlit and shaded leaves largely overcome these problems. A one-layered, two-big-leaf submodel for photosynthesis, stomatal conductance, leaf temperature, and energy fluxes is presented in this paper. It includes 1) an improved two stream approximation model of radiation transfer of the canopy, with attention to singularities in its solution and with separate integrations of radiation absorption by sunlit and shaded fractions of canopy; 2) a photosynthesis–stomatal conductance model for sunlit and shaded leaves separately, and for the simultaneous transfers of CO 2 and water vapor into and out of the leaf—leaf physiological properties (i.e., leaf nitrogen concentration, maximum potential electron transport rate, and hence photosynthetic capacity) vary throughout the plant canopy in response to the radiation–weight time-mean profile of photosynthetically active radiation (PAR), and the soil water limitation is applied to both maximum rates of leaf carbon uptake by Rubisco and electron transport, and the model scales up from leaf to canopy separately for all sunlit and shaded leaves; 3) a well-built quasi-Newton–Raphson method for simultaneous solution of temperatures of the sunlit and shaded leaves. The model was incorporated into the Common Land Model (CLM) and is denoted CLM 2L. It was driven with observational atmospheric forcing from two forest sites Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) and Boreal Ecosystem–Atmosphere Study (BOREAS) for 2 yr of simulation. The simulated fluxes by CLM 2L were compared with the observations, and with the results by the CLM with a single big-leaf scheme (CLM 1L) and by the CLM with the assimilation–stomatal conductance scheme of NCAR Land Surface Model (LSM). The results showed that CLM 2L was an improvement compared to the CLM 1L and the CLM for the test cases of tropical evergreen broadleaf land cover and coniferous boreal forest.

Journal

Journal of ClimateAmerican Meteorological Society

Published: May 23, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off