Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Modified Finescale Parameterization for Turbulent Mixing in the Western Equatorial Pacific

A Modified Finescale Parameterization for Turbulent Mixing in the Western Equatorial Pacific AbstractFinescale parameterizations are of great importance to explore the turbulent mixing in the open ocean due to the difficulty of microstructure measurements. Studies based on finescale parameterizations have greatly aided our knowledge of the turbulent mixing in the open ocean. In this study, we introduce a modified finescale parameterization (MMG) based on shear/strain variance ratio Rω and compare it with three existing parameterizations, namely, the MacKinnon–Gregg (MG) parameterization, the Gregg–Henyey–Polzin (GHP) parameterization based on shear and strain variances, and the GHP parameterization based on strain variance. The result indicates that the prediction of MG parameterization is the best, followed by the MMG parameterization, then the shear-and-strain-based GHP parameterization, and finally the strain-based GHP parameterization. The strain-based GHP parameterization is less effective than the shear-and-strain-based GHP parameterization, which is mainly due to its excessive dependence on stratification. The predictions of the strain-based MMG parameterization can be comparable to that of the MG parameterization and better than that of the shear-and-strain-based GHP parameterization. Most importantly, MMG parameterization is even effective over rough topography where the GHP parameterization fails. This modified MMG parameterization with prescribed Rω can be applied to extensive CTD data. It would be a useful tool for researchers to explore the turbulent mixing in the open ocean. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

A Modified Finescale Parameterization for Turbulent Mixing in the Western Equatorial Pacific

Loading next page...
 
/lp/american-meteorological-society/a-modified-finescale-parameterization-for-turbulent-mixing-in-the-L6iT1t9Br0

References (50)

Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0485
eISSN
1520-0485
DOI
10.1175/JPO-D-20-0205.1
Publisher site
See Article on Publisher Site

Abstract

AbstractFinescale parameterizations are of great importance to explore the turbulent mixing in the open ocean due to the difficulty of microstructure measurements. Studies based on finescale parameterizations have greatly aided our knowledge of the turbulent mixing in the open ocean. In this study, we introduce a modified finescale parameterization (MMG) based on shear/strain variance ratio Rω and compare it with three existing parameterizations, namely, the MacKinnon–Gregg (MG) parameterization, the Gregg–Henyey–Polzin (GHP) parameterization based on shear and strain variances, and the GHP parameterization based on strain variance. The result indicates that the prediction of MG parameterization is the best, followed by the MMG parameterization, then the shear-and-strain-based GHP parameterization, and finally the strain-based GHP parameterization. The strain-based GHP parameterization is less effective than the shear-and-strain-based GHP parameterization, which is mainly due to its excessive dependence on stratification. The predictions of the strain-based MMG parameterization can be comparable to that of the MG parameterization and better than that of the shear-and-strain-based GHP parameterization. Most importantly, MMG parameterization is even effective over rough topography where the GHP parameterization fails. This modified MMG parameterization with prescribed Rω can be applied to extensive CTD data. It would be a useful tool for researchers to explore the turbulent mixing in the open ocean.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Apr 25, 2021

There are no references for this article.