Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Modeling Case Study of Heavy Rainstorms along the Mei-Yu Front

A Modeling Case Study of Heavy Rainstorms along the Mei-Yu Front On 12–13 June 1991, a series of convective rainstorms (defined as mesoscale precipitation systems with rainfall rates exceeding 10 mm h −1 ) developed successively along the Mei-Yu front. During this event, new rainstorms formed to the east of preceding storms at an interval of approximately 300–400 km. The successive development and eastward propagation of these rainstorms produced heavy rainfall over the Jiang-Huai Basin in eastern China, with a maximum 24-h accumulation of 234 mm. This study presents the results of a numerical simulation of this heavy rainfall event using the Penn State–NCAR Mesoscale Model Version 5 (MM5) with a horizontal resolution of 54 km. Despite the relatively coarse horizontal resolution, the MM5, using a moist physics package comprising an explicit scheme and the Grell cumulus parameterization, simulated the successive development of the rainstorms. The simulated rainstorms compared favorably with the observed systems in terms of size and intensity. An additional sensitivity experiment showed that latent heat release is crucial for the development of the rainstorms, the mesoscale low-level jet, the mesolow, the rapid spinup of vorticity, and the Mei-Yu frontogenesis. Without latent heat release, the maximum vertical motion associated with the rainstorm is reduced from 70 to 6 cm s −1 . Additional model sensitivity experiments using the Kain–Fritsch cumulus parameterization with grid sizes of 54 and 18 km produced results very similar to the 54-km control experiment with the Grell scheme. This suggests that the simulation of Mei-Yu rainstorms, the mesoscale low-level jet, and the mesolow is not highly sensitive to convective parameterization and grid resolution. In all the full-physics experiments, the model rainfall was dominated by the resolvable-scale precipitation. This is attributed to the high relative humidity and low convective available potential energy environment in the vicinity of the Mei-Yu front. The modeling results suggest that there is strong interaction and positive feedback between the convective rainstorms embedded within the Mei-Yu front and the Mei-Yu front itself. The front provides a favorable environment for such rainstorms to develop, and the rainstorms intensify the Mei-Yu front. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

A Modeling Case Study of Heavy Rainstorms along the Mei-Yu Front

Loading next page...
 
/lp/american-meteorological-society/a-modeling-case-study-of-heavy-rainstorms-along-the-mei-yu-front-H1BLmdLqw9
Publisher
American Meteorological Society
Copyright
Copyright © 1996 American Meteorological Society
ISSN
1520-0493
DOI
10.1175/1520-0493(1998)126<2330:AMCSOH>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

On 12–13 June 1991, a series of convective rainstorms (defined as mesoscale precipitation systems with rainfall rates exceeding 10 mm h −1 ) developed successively along the Mei-Yu front. During this event, new rainstorms formed to the east of preceding storms at an interval of approximately 300–400 km. The successive development and eastward propagation of these rainstorms produced heavy rainfall over the Jiang-Huai Basin in eastern China, with a maximum 24-h accumulation of 234 mm. This study presents the results of a numerical simulation of this heavy rainfall event using the Penn State–NCAR Mesoscale Model Version 5 (MM5) with a horizontal resolution of 54 km. Despite the relatively coarse horizontal resolution, the MM5, using a moist physics package comprising an explicit scheme and the Grell cumulus parameterization, simulated the successive development of the rainstorms. The simulated rainstorms compared favorably with the observed systems in terms of size and intensity. An additional sensitivity experiment showed that latent heat release is crucial for the development of the rainstorms, the mesoscale low-level jet, the mesolow, the rapid spinup of vorticity, and the Mei-Yu frontogenesis. Without latent heat release, the maximum vertical motion associated with the rainstorm is reduced from 70 to 6 cm s −1 . Additional model sensitivity experiments using the Kain–Fritsch cumulus parameterization with grid sizes of 54 and 18 km produced results very similar to the 54-km control experiment with the Grell scheme. This suggests that the simulation of Mei-Yu rainstorms, the mesoscale low-level jet, and the mesolow is not highly sensitive to convective parameterization and grid resolution. In all the full-physics experiments, the model rainfall was dominated by the resolvable-scale precipitation. This is attributed to the high relative humidity and low convective available potential energy environment in the vicinity of the Mei-Yu front. The modeling results suggest that there is strong interaction and positive feedback between the convective rainstorms embedded within the Mei-Yu front and the Mei-Yu front itself. The front provides a favorable environment for such rainstorms to develop, and the rainstorms intensify the Mei-Yu front.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Nov 20, 1996

There are no references for this article.