A Demonstration That Large-Scale Warming Is Not Urban

A Demonstration That Large-Scale Warming Is Not Urban On the premise that urban heat islands are strongest in calm conditions but are largely absent in windy weather, daily minimum and maximum air temperatures for the period 1950–2000 at a worldwide selection of land stations are analyzed separately for windy and calm conditions, and the global and regional trends are compared. The trends in temperature are almost unaffected by this subsampling, indicating that urban development and other local or instrumental influences have contributed little overall to the observed warming trends. The trends of temperature averaged over the selected land stations worldwide are in close agreement with published trends based on much more complete networks, indicating that the smaller selection used here is sufficient for reliable sampling of global trends as well as interannual variations. A small tendency for windy days to have warmed more than other days in winter over Eurasia is the opposite of that expected from urbanization and is likely to be a consequence of atmospheric circulation changes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

A Demonstration That Large-Scale Warming Is Not Urban

Loading next page...
 
/lp/american-meteorological-society/a-demonstration-that-large-scale-warming-is-not-urban-78GpThphn8
Publisher site
See Article on Publisher Site

Abstract

On the premise that urban heat islands are strongest in calm conditions but are largely absent in windy weather, daily minimum and maximum air temperatures for the period 1950–2000 at a worldwide selection of land stations are analyzed separately for windy and calm conditions, and the global and regional trends are compared. The trends in temperature are almost unaffected by this subsampling, indicating that urban development and other local or instrumental influences have contributed little overall to the observed warming trends. The trends of temperature averaged over the selected land stations worldwide are in close agreement with published trends based on much more complete networks, indicating that the smaller selection used here is sufficient for reliable sampling of global trends as well as interannual variations. A small tendency for windy days to have warmed more than other days in winter over Eurasia is the opposite of that expected from urbanization and is likely to be a consequence of atmospheric circulation changes.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Mar 14, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off