Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Visual Field Defects in Ocular Hypertension and Glaucoma

Visual Field Defects in Ocular Hypertension and Glaucoma Abstract • We measured visual fields using three unconventional test stimuli; sinewave grating targets of 2 and 5 cycles/ degree and a visual acuity target. Of 15 patients with ocular hypertension (OHT), eight had visual field defects for contrast sensitivity when tested with a sine-wave grating target of low spatial frequency; these patients had normal perimetric fields and normal fields for visual acuity. We hypothesize that the outer extremities of the largest dendritic trees of retinal ganglion cells become functionally ineffective in some patients with OHT and early glaucoma, possibly due to retinal ischemia, and as a result visual sensitivity to low spatial frequency gratings is reduced while visual acuity is spared. Since this hypothetical mechanism may be somewhat independent of the mechanism that causes ganglion cell loss, not all the contrast field defects in OHT would be expected to progress to glaucomatous field defects and be evident to clinical perimetry. References 1. Rock WJ, Drance SM, Morgan RW: A modification of the Armaly visual field screen technique for glaucoma . Can J Ophthalmol 1972; 7:283-292. 2. Greve EL: Single and multiple stimulus static perimetry in glaucoma: The two phases of perimetry . Doc Ophthalmol 1973;36:1-355. 3. Fankhauser F: Automated perimetry , in Heilmann K, Richardson KT (eds): Automated Perimetry . Philadelphia, WB Saunders Co, 1978, pp 204-211. 4. Bodis-Wollner I: Visual acuity and contrast sensitivity in patients with cerebral lesions . Science 1972;178:769-771.Crossref 5. Regan D, Silver R, Murray TJ: Visual acuity and contrast sensitivity in multiple sclerosis: Hidden visual loss . Brain 1977;100:563-579.Crossref 6. Zimmern RL, Campbell FW, Wilkinson IMS: Subtle disturbances of vision after optic neuritis elicited by studying contrast sensitivity . J Neurol Neurosurg Psychiatry 1978;42:407-412.Crossref 7. Bodis-Wollner I, Hendley CD, Mylin LH, et al: Visual evoked potentials and the visuogram in multiple sclerosis . Ann Neurol 1979;5:40-47.Crossref 8. Wolkstein M, Atkin A, Bodis-Wollner I: Contrast sensitivity in retinal disease . Ophthalmology 1980;87:1140-1149.Crossref 9. Regan D, Beverley KI: Visual fields described by contrast sensitivity, by acuity and by relative sensitivity to different orientations . Invest Ophthalmol Vis Sci 1983;24:754-759. 10. Atkin A, Bodis-Wollner I, Wolkstein M, et al: Abnormalities of central contrast sensitivity in glaucoma . Am J Ophthalmol 1979;88:205-211. 11. Perkins ES: The Bedford glaucoma survey: I. Long-term follow up of borderline cases . Br J Ophthalmol 1973;59:179-185.Crossref 12. Heron JR, Milner BA, Regan D: Measurement of acuity variations within the central visual field caused by neurological lesions . J Neurol Neurosurg Psychiatry 1975;38:356-362.Crossref 13. Blondeau P, Phelps CS: Acuity perimetry: Standardization of test parameters . Invest Ophthalmol Vis Sci 1981;20( (suppl) ):83. 14. Armaly MF: Ocular pressure and visual fields: A ten-year follow-up study . Arch Ophthalmol 1969;81:25-40.Crossref 15. Brygdahl O: Perceived contrast variation with eccentricity of spatial sinewave stimuli . Vision Res 1966;6:553-565.Crossref 16. Hilz R, Cavonius CR: Functional organization of the peripheral retina: Sensitivity to periodic stimuli . Vision Res 1974;14:1333-1337.Crossref 17. Koenderink JJ, Bouman MA, de Mesquita AEB, et al: Perimetry of contrast detection thresholds of moving spatial sine wave patterns: II. The far peripheral visual fields (eccentricity 0 deg-50 deg) . J Opt Soc Am 1978;68:850-854.Crossref 18. Rovamo J, Virsu V, Nasanen R: Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision . Nature 1978;271:54-56.Crossref 19. Robson JG, Graham N: Probability summation and regional variation in contrast sensitivity across the visual field . Vision Res 1981; 21:409-418.Crossref 20. Kelly D: Effects of retinal inhomogeneity on spatiotemporal sinewave thresholds: ARVO meeting, Sarasota 1983 . Invest Ophthalmol Vis Sci 1983;24( (suppl) ):145. 21. Schwartz B, Rieser JC, Fishbein SL: Fluorescein angiographic defects of the optic disc in glaucoma . Arch Ophthalmol 1977;95:1961-1974.Crossref 22. Quigley HA, Green WR: The histology of human glaucoma cupping and nerve damage: Clinicopathologic correlations in 21 eyes . Ophthalmology 1979;10:1803-1827.Crossref 23. Quigley HA, Addicks EM, Green WR, et al: Optic nerve damage in human glaucoma . Arch Ophthalmol 1981;99:635-649.Crossref 24. Quigley HA, Addicks EM, Green WR: Optic nerve damage in human glaucoma . Arch Ophthalmol 1982;100:135-146.Crossref 25. Drance SM, Lakowski R, Schulzer M, et al: Acquired color vision changes in glaucoma . Arch Ophthalmol 1981;99:829-831.Crossref 26. Grützner P: Acquired colour vision defects , in Jameson D, Hurvich L (eds): Handbook of Sensory Physiology . New York, Springer Publishing Co Inc, 1972, vol VII/4, pp 643-659. 27. Henkind P: Retina , in Heilmann K, Richardson KT (eds): Glaucoma . Philadelphia, WB Saunders Co, 1978, pp 73-77. 28. Regan D, Neima D: Flicker versus pattern sensitivity in the central and peripheral visual fields of ophthalmological patients. Br J Ophthalmol, in press. 29. Boycott BB, Wässle H: The morphological types of ganglion cell in the domestic cat's retina . J Physiol 1974;240:397-419. 30. Walker WM: Ocular hypertension: Follow-up of 109 cases from 1963 to 1971 . Trans Ophthal Soc UK 1974;94:525-534. 31. David R, Livingston DG, Luntz MH: Ocular hypertension: A long-term follow-up of treated and untreated patients . Br J Ophthalmol 1977;61:668-674.Crossref http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Ophthalmology American Medical Association

Visual Field Defects in Ocular Hypertension and Glaucoma

Archives of Ophthalmology , Volume 102 (7) – Jul 1, 1984

Loading next page...
 
/lp/american-medical-association/visual-field-defects-in-ocular-hypertension-and-glaucoma-cxcQDZQ3GF
Publisher
American Medical Association
Copyright
Copyright © 1984 American Medical Association. All Rights Reserved.
ISSN
0003-9950
eISSN
1538-3687
DOI
10.1001/archopht.1984.01040030844029
Publisher site
See Article on Publisher Site

Abstract

Abstract • We measured visual fields using three unconventional test stimuli; sinewave grating targets of 2 and 5 cycles/ degree and a visual acuity target. Of 15 patients with ocular hypertension (OHT), eight had visual field defects for contrast sensitivity when tested with a sine-wave grating target of low spatial frequency; these patients had normal perimetric fields and normal fields for visual acuity. We hypothesize that the outer extremities of the largest dendritic trees of retinal ganglion cells become functionally ineffective in some patients with OHT and early glaucoma, possibly due to retinal ischemia, and as a result visual sensitivity to low spatial frequency gratings is reduced while visual acuity is spared. Since this hypothetical mechanism may be somewhat independent of the mechanism that causes ganglion cell loss, not all the contrast field defects in OHT would be expected to progress to glaucomatous field defects and be evident to clinical perimetry. References 1. Rock WJ, Drance SM, Morgan RW: A modification of the Armaly visual field screen technique for glaucoma . Can J Ophthalmol 1972; 7:283-292. 2. Greve EL: Single and multiple stimulus static perimetry in glaucoma: The two phases of perimetry . Doc Ophthalmol 1973;36:1-355. 3. Fankhauser F: Automated perimetry , in Heilmann K, Richardson KT (eds): Automated Perimetry . Philadelphia, WB Saunders Co, 1978, pp 204-211. 4. Bodis-Wollner I: Visual acuity and contrast sensitivity in patients with cerebral lesions . Science 1972;178:769-771.Crossref 5. Regan D, Silver R, Murray TJ: Visual acuity and contrast sensitivity in multiple sclerosis: Hidden visual loss . Brain 1977;100:563-579.Crossref 6. Zimmern RL, Campbell FW, Wilkinson IMS: Subtle disturbances of vision after optic neuritis elicited by studying contrast sensitivity . J Neurol Neurosurg Psychiatry 1978;42:407-412.Crossref 7. Bodis-Wollner I, Hendley CD, Mylin LH, et al: Visual evoked potentials and the visuogram in multiple sclerosis . Ann Neurol 1979;5:40-47.Crossref 8. Wolkstein M, Atkin A, Bodis-Wollner I: Contrast sensitivity in retinal disease . Ophthalmology 1980;87:1140-1149.Crossref 9. Regan D, Beverley KI: Visual fields described by contrast sensitivity, by acuity and by relative sensitivity to different orientations . Invest Ophthalmol Vis Sci 1983;24:754-759. 10. Atkin A, Bodis-Wollner I, Wolkstein M, et al: Abnormalities of central contrast sensitivity in glaucoma . Am J Ophthalmol 1979;88:205-211. 11. Perkins ES: The Bedford glaucoma survey: I. Long-term follow up of borderline cases . Br J Ophthalmol 1973;59:179-185.Crossref 12. Heron JR, Milner BA, Regan D: Measurement of acuity variations within the central visual field caused by neurological lesions . J Neurol Neurosurg Psychiatry 1975;38:356-362.Crossref 13. Blondeau P, Phelps CS: Acuity perimetry: Standardization of test parameters . Invest Ophthalmol Vis Sci 1981;20( (suppl) ):83. 14. Armaly MF: Ocular pressure and visual fields: A ten-year follow-up study . Arch Ophthalmol 1969;81:25-40.Crossref 15. Brygdahl O: Perceived contrast variation with eccentricity of spatial sinewave stimuli . Vision Res 1966;6:553-565.Crossref 16. Hilz R, Cavonius CR: Functional organization of the peripheral retina: Sensitivity to periodic stimuli . Vision Res 1974;14:1333-1337.Crossref 17. Koenderink JJ, Bouman MA, de Mesquita AEB, et al: Perimetry of contrast detection thresholds of moving spatial sine wave patterns: II. The far peripheral visual fields (eccentricity 0 deg-50 deg) . J Opt Soc Am 1978;68:850-854.Crossref 18. Rovamo J, Virsu V, Nasanen R: Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision . Nature 1978;271:54-56.Crossref 19. Robson JG, Graham N: Probability summation and regional variation in contrast sensitivity across the visual field . Vision Res 1981; 21:409-418.Crossref 20. Kelly D: Effects of retinal inhomogeneity on spatiotemporal sinewave thresholds: ARVO meeting, Sarasota 1983 . Invest Ophthalmol Vis Sci 1983;24( (suppl) ):145. 21. Schwartz B, Rieser JC, Fishbein SL: Fluorescein angiographic defects of the optic disc in glaucoma . Arch Ophthalmol 1977;95:1961-1974.Crossref 22. Quigley HA, Green WR: The histology of human glaucoma cupping and nerve damage: Clinicopathologic correlations in 21 eyes . Ophthalmology 1979;10:1803-1827.Crossref 23. Quigley HA, Addicks EM, Green WR, et al: Optic nerve damage in human glaucoma . Arch Ophthalmol 1981;99:635-649.Crossref 24. Quigley HA, Addicks EM, Green WR: Optic nerve damage in human glaucoma . Arch Ophthalmol 1982;100:135-146.Crossref 25. Drance SM, Lakowski R, Schulzer M, et al: Acquired color vision changes in glaucoma . Arch Ophthalmol 1981;99:829-831.Crossref 26. Grützner P: Acquired colour vision defects , in Jameson D, Hurvich L (eds): Handbook of Sensory Physiology . New York, Springer Publishing Co Inc, 1972, vol VII/4, pp 643-659. 27. Henkind P: Retina , in Heilmann K, Richardson KT (eds): Glaucoma . Philadelphia, WB Saunders Co, 1978, pp 73-77. 28. Regan D, Neima D: Flicker versus pattern sensitivity in the central and peripheral visual fields of ophthalmological patients. Br J Ophthalmol, in press. 29. Boycott BB, Wässle H: The morphological types of ganglion cell in the domestic cat's retina . J Physiol 1974;240:397-419. 30. Walker WM: Ocular hypertension: Follow-up of 109 cases from 1963 to 1971 . Trans Ophthal Soc UK 1974;94:525-534. 31. David R, Livingston DG, Luntz MH: Ocular hypertension: A long-term follow-up of treated and untreated patients . Br J Ophthalmol 1977;61:668-674.Crossref

Journal

Archives of OphthalmologyAmerican Medical Association

Published: Jul 1, 1984

References