Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Transforming Growth Factor a Expression Helps to Distinguish Keratoacanthomas From Squamous Cell Carcinomas

Transforming Growth Factor a Expression Helps to Distinguish Keratoacanthomas From Squamous Cell... Abstract • Keratoacanthomas may be difficult to distinguish histologically from squamous cell carcinomas. We studied 20 keratoacanthomas and 22 squamous cell carcinomas immunohistochemically using an antibody directed against transforming growth factor α to determine if the pattern of transforming growth factor α expression would provide a useful method of differentiating these tumors. Ninety percent of the keratoacanthomas demonstrated a diffuse pattern within tumor lobules in which all but the most peripheral rim of cells were stained. A similar localization of transforming growth factor α was not identified in squamous cell carcinomas. In addition, 40% of the squamous cell carcinomas but none of the keratoacanthomas showed focal transforming growth factor α immunostaining. Our results suggest that transforming growth factor α expression may be a marker of epithelial differentiation and may help distinguish between these two tumors. (Arch Dermatol. 1991;127:1167-1171) References 1. Todaro GJ, De Larco JE, Cohen S. Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells . Nature. 1976;264:26-31.Crossref 2. Marquardt H, Hunkapiller MW, Hood LE, et al. Transforming growth factors produced by retrovirus transformed rodent fibroblasts and human melanoma cells: amino acid sequence homology with epidermal growth factor . Proc Natl Acad Sci U S A. 1983; 80:4684-4688.Crossref 3. Massague J. Epidermal growth factor-like transforming growth factor, II: interactions with epidermal growth factors in human placenta membranes and A431 cells . J Biol Chem. 1983;258:13614-13630. 4. Carpenter G, Stoscheck CM, Preston YA, De Larco JE. Antibodies to the epidermal growth factor block the biological activities of sarcoma growth factor . Proc Natl Acad Sci U S A. 1983;80:5627-5630.Crossref 5. Coffey RJ, Sipes NJ, Bascom CC, et al. Growth modulation of mouse keratinocytes by transforming growth factors . Cancer Res. 1988;48:1596-1602. 6. Finzi E, Fleming T, Pierce JH. Retroviral expression of transforming growth factor-α does not transform fibroblasts or keratinocytes . J Invest Dermatol. 1990;95:382-387.Crossref 7. Rosenthal A, Lindquist PB, Bringman TS, Goeddel DV, Derynck R. Expression in rat fibroblasts of a transforming growth factor-α CDNA results in transformation . Cell. 1986;46:301-309.Crossref 8. Finzi E, Fleming T, Segatto O, et al. The human transforming growth factor type α coding sequence is not a direct acting oncogene when overexpressed in NIH/3T3 cells . Proc Natl Acad Sci U S A. 1987;84:3733-3737.Crossref 9. Coffey RJ, Derynck R, Wilcox JN, et al. Production and autoinduction of transforming growth factor-α in human keratinocytes . Nature. 1987;328:817-820.Crossref 10. Finzi E, Harkins R, Horn T. TGF-alpha is widely expressed in differentiated as well as hyperproliferative skin epithelium . J Invest Dermatol. In press. 11. Finzi E, Kilkenny A, Strickland JE, et al. TGFα stimulates growth of skin papillomas by autocrine and paracrine mechanisms but does not cause neoplastic progression . Mol Carcinog. 1988;1:7-12.Crossref 12. Sandgren EP, Luetteke NC, Palmiter RD, Brinster RL, Lee DC. Overexpression of TGFα in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast . Cell. 1990;61:1121-1135.Crossref 13. Jhappan C, Stahle C, Harkins RN, Fausto N, Smith GH, Merlino GT. TGFα overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas . Cell. 1990;61:1137-1146.Crossref 14. Matsu Y, Halter SA, Holt JT, Hogan BLM, Coffey RJ. Development of mammary hyperplasia and neoplasia in MMTV-TGFα transgenic mice . Cell. 1990;61:1147-115.Crossref 15. Derynck R, Goeddel DV, Ullrich A, et al. Synthesis of messenger RNAs for transforming growth factor α and β and the epidermal growth factor receptor by human tumors . Cancer Res. 1987;47:707-712. 16. Elder JT, Fischer GJ, Lindquist PG, et al. Overexpression of transforming growth factor α in psoriatic epidermis . Science. 1989;243:811-814.Crossref 17. Gottlieb AB, Chang CK, Posnett DN, Fanelli B, Tam JP. Detection of transforming growth factor α in normal malignant and hyperproliferative human keratinocytes . J Exp Med. 1988;167:670-675.Crossref 18. Rook A, Whimster I. Le Kératoacanthome . Arch Belg Dermatol Syph. 1950;6:137-146. 19. Ghadially FN, Barton BW, Kerridge DF. Etiology of keratoacanthoma . Cancer. 1963;16:603-611.Crossref 20. Ghadially FN. The role of the hair follicle in origin and evolution of some cutaneous neoplasms of man and experimental animals . Cancer. 1961;14:801-816.Crossref 21. Epstein E, Epstein NN, Bragg K, et al. Metastases from squamous cell carcinomas of the skin . Arch Dermatol. 1968;97:245-251.Crossref 22. Cooper PH, Wolfe JT. Perioral keratoacanthomas with extensive perineural invasion and intravenous growth . Arch Dermatol. 1988;124:1397-1401.Crossref 23. Kern WA, McCray MK. The histopathologic differentiation of keratoacanthoma and squamous cell carcinoma of the skin . J Cutan Pathol. 1980;7:318-325.Crossref 24. Bringman TS, Lindquist PB, Derynck R. Different transforming growth factor-α species are derived from a glycosylated and palmitoylated transmembrane precursor . Cell. 1987;48:429-440.Crossref 25. Derynck R. Transforming growth factor-α . Cell. 1988;54:593-595.Crossref 26. Schreiber AB, Winkler ME, Derynck R. Transforming growth factor-α: a more potent angiogenic mediator than epidermal growth factor . Science. 1986;232:1250-1253.Crossref 27. Barrandon Y, Green H. Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-α and epidermal growth factor . Cell. 1987;50:1131-1137.Crossref 28. Sporn MB, Todaro GJ. Autocrine secretion and malignant transformation of cells . N Engl J Med. 1980;303:878-880.Crossref 29. Di Marco E, Pierce JH, Fleming TP, et al. Autocrine interaction between TGF-α and EGF-receptor: quantitative requirements for induction of the malignant phenotype . Oncogene. 1989;4:831-838. 30. Pinkus H, Mehregan A. A Guide to Dermatohistopathology . 2nd ed. East Norwalk, Conn: Appleton & Lange; 1976:515-516. 31. Lever WF, Schaumberg-Lever G. Histopathology of the Skin . 7th ed. Philadelphia, Pa: JB Lippincott; 1990:560-563. 32. Ackerman AB. Histopathology of keratoacanthoma . In: Andrade R, Gunport SL, Popkin GL, Rees TD, eds. Cancer of the Skin . Philadelphia, Pa: WB Saunders Co; 1976:781-796. 33. Ashley DJB. Evans' Histological Appearances of Tumours . 3rd ed. New York, NY: Churchill Livingstone Inc; 1978:346-368. 34. Chalet MD, Connors RC, Ackerman AB. Squamous cell carcinoma vs. keratoacanthoma: criteria for histologic differentiation . J Dermatol Surg Oncol. 1975;1:14-15.Crossref 35. Fisher ER, McCoy MM II, Wechsler HL. Analysis of histopathologic and electron microscopic determinants of keratoacanthoma and squamous cell carcinoma . Cancer. 1972;29:1387-1397.Crossref 36. Szymanski FJ. Keratoacanthoma . In: Graham JH, Johnson WC, Helwig EB, eds. Dermal Pathology . New York, NY: Harper & Row Publishers Inc; 1972:625-630. 37. Reed R. New Concepts in Surgical Pathology of the Skin . New York, NY: John Wiley & Sons Inc; 1976:27-60. 38. Graham RM, Macfarlane AW, Curley RK, Nash JRG. B2 Microglobulin expression in keratoacanthomas and squamous cell carcinoma . Br J Dermatol. 1987;117:441-449.Crossref 39. Schaumberg-Lever G, Alroy J, Ucci A, et al. Cell-surface carbohydrates in proliferative epidermal lesions: distribution of A, B and H blood group antigens in benign and malignant lesions . Am J Dermatopathol. 1984;6:583-589.Crossref 40. Nanney LB, Magid M, Stoscheck CM, King LE. Epidermal growth factor binding and receptor distribution in normal human skin and appendages . J Invest Dermatol. 1984;83:385-393.Crossref 41. Brachman R, Lindquist PB, Nagashima M, et al. Transmembrane TGF-α precursors activate EGF/TGF-α receptors . Cell. 1989;56:691-700.Crossref 42. Wong ST, Winchell LF, McCune BK, et al. The TGF-α precursor expressed on the cell surface binds to the EGF receptor on adjacent cells, leading to signal transduction . Cell. 56:495-506.Crossref 43. Anklesaria P, Teixidó J, Laiho M, et al. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factorα to epidermal growth factor receptors promotes cell proliferation . Proc Natl Acad Sci U S A. 1990;87:3289-3293.Crossref 44. Yochem J, Greenwald I. gLp-1 and Lin-12, genes implicated in distinct cell-cell interactions in C. elegans, encode similar transmembrane proteins . Cell. 1989;58:553-563.Crossref 45. Tepass U, Theres C, Knust E. Crumbs encodes an EGF-like protein expressed on apical membranes of drosophila epithelial cells and required for organization of epithelial . Cell. 1990;61:787-799.Crossref http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Dermatology American Medical Association

Transforming Growth Factor a Expression Helps to Distinguish Keratoacanthomas From Squamous Cell Carcinomas

Archives of Dermatology , Volume 127 (8) – Aug 1, 1991

Loading next page...
 
/lp/american-medical-association/transforming-growth-factor-a-expression-helps-to-distinguish-ZKTfmDEcAe
Publisher
American Medical Association
Copyright
Copyright © 1991 American Medical Association. All Rights Reserved.
ISSN
0003-987X
eISSN
1538-3652
DOI
10.1001/archderm.1991.01680070067007
Publisher site
See Article on Publisher Site

Abstract

Abstract • Keratoacanthomas may be difficult to distinguish histologically from squamous cell carcinomas. We studied 20 keratoacanthomas and 22 squamous cell carcinomas immunohistochemically using an antibody directed against transforming growth factor α to determine if the pattern of transforming growth factor α expression would provide a useful method of differentiating these tumors. Ninety percent of the keratoacanthomas demonstrated a diffuse pattern within tumor lobules in which all but the most peripheral rim of cells were stained. A similar localization of transforming growth factor α was not identified in squamous cell carcinomas. In addition, 40% of the squamous cell carcinomas but none of the keratoacanthomas showed focal transforming growth factor α immunostaining. Our results suggest that transforming growth factor α expression may be a marker of epithelial differentiation and may help distinguish between these two tumors. (Arch Dermatol. 1991;127:1167-1171) References 1. Todaro GJ, De Larco JE, Cohen S. Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells . Nature. 1976;264:26-31.Crossref 2. Marquardt H, Hunkapiller MW, Hood LE, et al. Transforming growth factors produced by retrovirus transformed rodent fibroblasts and human melanoma cells: amino acid sequence homology with epidermal growth factor . Proc Natl Acad Sci U S A. 1983; 80:4684-4688.Crossref 3. Massague J. Epidermal growth factor-like transforming growth factor, II: interactions with epidermal growth factors in human placenta membranes and A431 cells . J Biol Chem. 1983;258:13614-13630. 4. Carpenter G, Stoscheck CM, Preston YA, De Larco JE. Antibodies to the epidermal growth factor block the biological activities of sarcoma growth factor . Proc Natl Acad Sci U S A. 1983;80:5627-5630.Crossref 5. Coffey RJ, Sipes NJ, Bascom CC, et al. Growth modulation of mouse keratinocytes by transforming growth factors . Cancer Res. 1988;48:1596-1602. 6. Finzi E, Fleming T, Pierce JH. Retroviral expression of transforming growth factor-α does not transform fibroblasts or keratinocytes . J Invest Dermatol. 1990;95:382-387.Crossref 7. Rosenthal A, Lindquist PB, Bringman TS, Goeddel DV, Derynck R. Expression in rat fibroblasts of a transforming growth factor-α CDNA results in transformation . Cell. 1986;46:301-309.Crossref 8. Finzi E, Fleming T, Segatto O, et al. The human transforming growth factor type α coding sequence is not a direct acting oncogene when overexpressed in NIH/3T3 cells . Proc Natl Acad Sci U S A. 1987;84:3733-3737.Crossref 9. Coffey RJ, Derynck R, Wilcox JN, et al. Production and autoinduction of transforming growth factor-α in human keratinocytes . Nature. 1987;328:817-820.Crossref 10. Finzi E, Harkins R, Horn T. TGF-alpha is widely expressed in differentiated as well as hyperproliferative skin epithelium . J Invest Dermatol. In press. 11. Finzi E, Kilkenny A, Strickland JE, et al. TGFα stimulates growth of skin papillomas by autocrine and paracrine mechanisms but does not cause neoplastic progression . Mol Carcinog. 1988;1:7-12.Crossref 12. Sandgren EP, Luetteke NC, Palmiter RD, Brinster RL, Lee DC. Overexpression of TGFα in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast . Cell. 1990;61:1121-1135.Crossref 13. Jhappan C, Stahle C, Harkins RN, Fausto N, Smith GH, Merlino GT. TGFα overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas . Cell. 1990;61:1137-1146.Crossref 14. Matsu Y, Halter SA, Holt JT, Hogan BLM, Coffey RJ. Development of mammary hyperplasia and neoplasia in MMTV-TGFα transgenic mice . Cell. 1990;61:1147-115.Crossref 15. Derynck R, Goeddel DV, Ullrich A, et al. Synthesis of messenger RNAs for transforming growth factor α and β and the epidermal growth factor receptor by human tumors . Cancer Res. 1987;47:707-712. 16. Elder JT, Fischer GJ, Lindquist PG, et al. Overexpression of transforming growth factor α in psoriatic epidermis . Science. 1989;243:811-814.Crossref 17. Gottlieb AB, Chang CK, Posnett DN, Fanelli B, Tam JP. Detection of transforming growth factor α in normal malignant and hyperproliferative human keratinocytes . J Exp Med. 1988;167:670-675.Crossref 18. Rook A, Whimster I. Le Kératoacanthome . Arch Belg Dermatol Syph. 1950;6:137-146. 19. Ghadially FN, Barton BW, Kerridge DF. Etiology of keratoacanthoma . Cancer. 1963;16:603-611.Crossref 20. Ghadially FN. The role of the hair follicle in origin and evolution of some cutaneous neoplasms of man and experimental animals . Cancer. 1961;14:801-816.Crossref 21. Epstein E, Epstein NN, Bragg K, et al. Metastases from squamous cell carcinomas of the skin . Arch Dermatol. 1968;97:245-251.Crossref 22. Cooper PH, Wolfe JT. Perioral keratoacanthomas with extensive perineural invasion and intravenous growth . Arch Dermatol. 1988;124:1397-1401.Crossref 23. Kern WA, McCray MK. The histopathologic differentiation of keratoacanthoma and squamous cell carcinoma of the skin . J Cutan Pathol. 1980;7:318-325.Crossref 24. Bringman TS, Lindquist PB, Derynck R. Different transforming growth factor-α species are derived from a glycosylated and palmitoylated transmembrane precursor . Cell. 1987;48:429-440.Crossref 25. Derynck R. Transforming growth factor-α . Cell. 1988;54:593-595.Crossref 26. Schreiber AB, Winkler ME, Derynck R. Transforming growth factor-α: a more potent angiogenic mediator than epidermal growth factor . Science. 1986;232:1250-1253.Crossref 27. Barrandon Y, Green H. Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-α and epidermal growth factor . Cell. 1987;50:1131-1137.Crossref 28. Sporn MB, Todaro GJ. Autocrine secretion and malignant transformation of cells . N Engl J Med. 1980;303:878-880.Crossref 29. Di Marco E, Pierce JH, Fleming TP, et al. Autocrine interaction between TGF-α and EGF-receptor: quantitative requirements for induction of the malignant phenotype . Oncogene. 1989;4:831-838. 30. Pinkus H, Mehregan A. A Guide to Dermatohistopathology . 2nd ed. East Norwalk, Conn: Appleton & Lange; 1976:515-516. 31. Lever WF, Schaumberg-Lever G. Histopathology of the Skin . 7th ed. Philadelphia, Pa: JB Lippincott; 1990:560-563. 32. Ackerman AB. Histopathology of keratoacanthoma . In: Andrade R, Gunport SL, Popkin GL, Rees TD, eds. Cancer of the Skin . Philadelphia, Pa: WB Saunders Co; 1976:781-796. 33. Ashley DJB. Evans' Histological Appearances of Tumours . 3rd ed. New York, NY: Churchill Livingstone Inc; 1978:346-368. 34. Chalet MD, Connors RC, Ackerman AB. Squamous cell carcinoma vs. keratoacanthoma: criteria for histologic differentiation . J Dermatol Surg Oncol. 1975;1:14-15.Crossref 35. Fisher ER, McCoy MM II, Wechsler HL. Analysis of histopathologic and electron microscopic determinants of keratoacanthoma and squamous cell carcinoma . Cancer. 1972;29:1387-1397.Crossref 36. Szymanski FJ. Keratoacanthoma . In: Graham JH, Johnson WC, Helwig EB, eds. Dermal Pathology . New York, NY: Harper & Row Publishers Inc; 1972:625-630. 37. Reed R. New Concepts in Surgical Pathology of the Skin . New York, NY: John Wiley & Sons Inc; 1976:27-60. 38. Graham RM, Macfarlane AW, Curley RK, Nash JRG. B2 Microglobulin expression in keratoacanthomas and squamous cell carcinoma . Br J Dermatol. 1987;117:441-449.Crossref 39. Schaumberg-Lever G, Alroy J, Ucci A, et al. Cell-surface carbohydrates in proliferative epidermal lesions: distribution of A, B and H blood group antigens in benign and malignant lesions . Am J Dermatopathol. 1984;6:583-589.Crossref 40. Nanney LB, Magid M, Stoscheck CM, King LE. Epidermal growth factor binding and receptor distribution in normal human skin and appendages . J Invest Dermatol. 1984;83:385-393.Crossref 41. Brachman R, Lindquist PB, Nagashima M, et al. Transmembrane TGF-α precursors activate EGF/TGF-α receptors . Cell. 1989;56:691-700.Crossref 42. Wong ST, Winchell LF, McCune BK, et al. The TGF-α precursor expressed on the cell surface binds to the EGF receptor on adjacent cells, leading to signal transduction . Cell. 56:495-506.Crossref 43. Anklesaria P, Teixidó J, Laiho M, et al. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factorα to epidermal growth factor receptors promotes cell proliferation . Proc Natl Acad Sci U S A. 1990;87:3289-3293.Crossref 44. Yochem J, Greenwald I. gLp-1 and Lin-12, genes implicated in distinct cell-cell interactions in C. elegans, encode similar transmembrane proteins . Cell. 1989;58:553-563.Crossref 45. Tepass U, Theres C, Knust E. Crumbs encodes an EGF-like protein expressed on apical membranes of drosophila epithelial cells and required for organization of epithelial . Cell. 1990;61:787-799.Crossref

Journal

Archives of DermatologyAmerican Medical Association

Published: Aug 1, 1991

References