Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Thin Lipid Membranes: A Model for Cell Membranes

Thin Lipid Membranes: A Model for Cell Membranes Abstract The permeability properties of "unmodified" thin ( < 100 Angstroms) lipid membranes separating two aqueous phases are those expected of a thin layer of hydrocarbon. Certain molecules interact with these membranes to enormously increase their permeability to ions and hydrophilic nonelectrolytes. Some of these molecules function as cation carriers with high specificity for K+ over Na+; some create aqueous pores approximately 4A in radius; others create strongly voltage-dependent conductance sites that can give rise to action potentials kinetically similar to those of nerve and muscle. These agents produce local modifications occupying a small fraction of the membrane area; ie, the "modified" membrane is a mosaic structure. Permeability and pharmacological data demonstrate that plasma membranes are also mosaic structures. If the Davson-Danielli model of plasma membranes is essentially correct, modified thin lipid membranes are both phenomenologically and structurally an excellent model for biological membranes. References 1. Jacobs MH: Early osmotic history of the plasma membrane. Circulation 26:1013-1021, 1962.Crossref 2. Hober R: Physical Chemistry of Cells and Tissues . Philadelphia, Blakiston Co, 1945. 3. Overton E: Ueber die osmotischen Eigenschaften der lebenden Pflanzen und Tierzelle. Vierteljahresschr Naturforsch Ges Zurich 40:159-201, 1895. 4. Collander R: The permeability of plant protoplasts to non-electrolytes. Trans Faraday Soc 33:985-990, 1937.Crossref 5. Teorell T: Transport processes and electrical phenomena in ionic membranes. Progr Biophys Biophys Chem 3:305-369, 1953. 6. Eisenman G: On the elementary atomic origin of equilibrium ionic specificity , in Kleinzeller A, Kotyk A (eds): Membrane Transport and Metabolism . New York, Academic Press Inc, 1960, p 163. 7. Gorter E, Grendel F: On bimolecular layers of lipoids on the chromocytes of the blood. J Exp Med 41:439-443, 1925.Crossref 8. Davson H, Danielli JF: The Permeability of Natural Membranes , ed 2. Cambridge, England, Cambridge University Press, 1952. 9. Davson H: Growth of the concept of the paucimolecular membrane. Circulation 26:1022-1037, 1962.Crossref 10. Danielli JF: Morphological and molecular aspects of active transport , in Active Transport and Secretion: Symposium of the Society for Experimental Biology , No. 8. New York, Academic Press Inc, 1954, p 502. 11. Mueller P, Rudin DO, Tien HT, et al: Methods for the formation of single bimolecular lipid membranes in aqueous solution J Phys Chem 67:534-535, 1963.Crossref 12. Finkelstein A, Cass A: Permeability and electrical properties of thin lipid membranes. J Gen Physiol 52:145s-171s, 1968.Crossref 13. Luzzati V, Husson F: The structure of the liquid-crystalline phases of lipid-water systems. J Cell Biol 12:207-219, 1962.Crossref 14. Garrett HE: Aggregation in detergent solutions , in Durham K (ed): Surface Activity and Detergency . London, Macmillan & Co Ltd, 1961, p 37. 15. Mueller P, Rudin DO: Development of K+ and Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem Biophys Res Commun 26:398-404, 1967.Crossref 16. Kilbourn BT, Dunitz JD, Pioda LA, et al: Structure of the K+ complex with nonactin, a macrotetrolide antibiotic possessing highly specific K + transport properties. J Molec Biol 30:559-563, 1967.Crossref 17. Eisenman G, Ciani S, Szabo G: The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents. J Membrane Biol 1:294-345, 1969.Crossref 18. McLaughlin SGA, Szabo G, Eisenman G, et al: Surface charge and the conductance of phospholipid membranes. Proc Nat Acad Sci USA 67:1268-1275, 1970.Crossref 19. Lampen JO: Interference of polyene antifungal antibiotics (especially nystatin and filipin) with specific membrane functions , in Newton BA, Reynolds PE (eds): Biochemical Studies of Antimicrobial Drugs . Cambridge, Mass, Society of General Microbiology, 1966, p 111. 20. Andreoli TE, Monahan M: The interaction of polyene antibiotics with thin lipid membranes. J Gen Physiol 52:300-325, 1968.Crossref 21. Cass A, Finkelstein A, Krespi V: The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol 56:100-124, 1970.Crossref 22. Holz R, Finkelstein A: The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol 56:125-145, 1970.Crossref 23. Mueller P, Rudin DO: Resting and action potentials in experimental bimolecular lipid membranes. J Theor Biol 18:222-258, 1968.Crossref 24. Mueller P, Rudin DO: Action potentials induced in bimolecular lipid membranes. Nature 217:713-719, 1968.Crossref 25. Mueller P, Rudin DO: 1969. Translocators in bimolecular lipid membranes: Their role in dissipative and conservative bioenergy transductions , in Current Topics in Bioenergetics . New York, Academic Press Inc, 1969, vol 3. 26. Hodgkin AL, Huxley AF: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449-472,1952. 27. Ehrenstein G, Lecar H, Nossal R: The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material. J Gen Physiol 55:119-133, 1970.Crossref http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Internal Medicine American Medical Association

Thin Lipid Membranes: A Model for Cell Membranes

Archives of Internal Medicine , Volume 129 (2) – Feb 1, 1972

Loading next page...
 
/lp/american-medical-association/thin-lipid-membranes-a-model-for-cell-membranes-0OyYjHMnGQ
Publisher
American Medical Association
Copyright
Copyright © 1972 American Medical Association. All Rights Reserved.
ISSN
0003-9926
eISSN
1538-3679
DOI
10.1001/archinte.1972.00320020073005
Publisher site
See Article on Publisher Site

Abstract

Abstract The permeability properties of "unmodified" thin ( < 100 Angstroms) lipid membranes separating two aqueous phases are those expected of a thin layer of hydrocarbon. Certain molecules interact with these membranes to enormously increase their permeability to ions and hydrophilic nonelectrolytes. Some of these molecules function as cation carriers with high specificity for K+ over Na+; some create aqueous pores approximately 4A in radius; others create strongly voltage-dependent conductance sites that can give rise to action potentials kinetically similar to those of nerve and muscle. These agents produce local modifications occupying a small fraction of the membrane area; ie, the "modified" membrane is a mosaic structure. Permeability and pharmacological data demonstrate that plasma membranes are also mosaic structures. If the Davson-Danielli model of plasma membranes is essentially correct, modified thin lipid membranes are both phenomenologically and structurally an excellent model for biological membranes. References 1. Jacobs MH: Early osmotic history of the plasma membrane. Circulation 26:1013-1021, 1962.Crossref 2. Hober R: Physical Chemistry of Cells and Tissues . Philadelphia, Blakiston Co, 1945. 3. Overton E: Ueber die osmotischen Eigenschaften der lebenden Pflanzen und Tierzelle. Vierteljahresschr Naturforsch Ges Zurich 40:159-201, 1895. 4. Collander R: The permeability of plant protoplasts to non-electrolytes. Trans Faraday Soc 33:985-990, 1937.Crossref 5. Teorell T: Transport processes and electrical phenomena in ionic membranes. Progr Biophys Biophys Chem 3:305-369, 1953. 6. Eisenman G: On the elementary atomic origin of equilibrium ionic specificity , in Kleinzeller A, Kotyk A (eds): Membrane Transport and Metabolism . New York, Academic Press Inc, 1960, p 163. 7. Gorter E, Grendel F: On bimolecular layers of lipoids on the chromocytes of the blood. J Exp Med 41:439-443, 1925.Crossref 8. Davson H, Danielli JF: The Permeability of Natural Membranes , ed 2. Cambridge, England, Cambridge University Press, 1952. 9. Davson H: Growth of the concept of the paucimolecular membrane. Circulation 26:1022-1037, 1962.Crossref 10. Danielli JF: Morphological and molecular aspects of active transport , in Active Transport and Secretion: Symposium of the Society for Experimental Biology , No. 8. New York, Academic Press Inc, 1954, p 502. 11. Mueller P, Rudin DO, Tien HT, et al: Methods for the formation of single bimolecular lipid membranes in aqueous solution J Phys Chem 67:534-535, 1963.Crossref 12. Finkelstein A, Cass A: Permeability and electrical properties of thin lipid membranes. J Gen Physiol 52:145s-171s, 1968.Crossref 13. Luzzati V, Husson F: The structure of the liquid-crystalline phases of lipid-water systems. J Cell Biol 12:207-219, 1962.Crossref 14. Garrett HE: Aggregation in detergent solutions , in Durham K (ed): Surface Activity and Detergency . London, Macmillan & Co Ltd, 1961, p 37. 15. Mueller P, Rudin DO: Development of K+ and Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem Biophys Res Commun 26:398-404, 1967.Crossref 16. Kilbourn BT, Dunitz JD, Pioda LA, et al: Structure of the K+ complex with nonactin, a macrotetrolide antibiotic possessing highly specific K + transport properties. J Molec Biol 30:559-563, 1967.Crossref 17. Eisenman G, Ciani S, Szabo G: The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents. J Membrane Biol 1:294-345, 1969.Crossref 18. McLaughlin SGA, Szabo G, Eisenman G, et al: Surface charge and the conductance of phospholipid membranes. Proc Nat Acad Sci USA 67:1268-1275, 1970.Crossref 19. Lampen JO: Interference of polyene antifungal antibiotics (especially nystatin and filipin) with specific membrane functions , in Newton BA, Reynolds PE (eds): Biochemical Studies of Antimicrobial Drugs . Cambridge, Mass, Society of General Microbiology, 1966, p 111. 20. Andreoli TE, Monahan M: The interaction of polyene antibiotics with thin lipid membranes. J Gen Physiol 52:300-325, 1968.Crossref 21. Cass A, Finkelstein A, Krespi V: The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol 56:100-124, 1970.Crossref 22. Holz R, Finkelstein A: The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol 56:125-145, 1970.Crossref 23. Mueller P, Rudin DO: Resting and action potentials in experimental bimolecular lipid membranes. J Theor Biol 18:222-258, 1968.Crossref 24. Mueller P, Rudin DO: Action potentials induced in bimolecular lipid membranes. Nature 217:713-719, 1968.Crossref 25. Mueller P, Rudin DO: 1969. Translocators in bimolecular lipid membranes: Their role in dissipative and conservative bioenergy transductions , in Current Topics in Bioenergetics . New York, Academic Press Inc, 1969, vol 3. 26. Hodgkin AL, Huxley AF: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449-472,1952. 27. Ehrenstein G, Lecar H, Nossal R: The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material. J Gen Physiol 55:119-133, 1970.Crossref

Journal

Archives of Internal MedicineAmerican Medical Association

Published: Feb 1, 1972

References