Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The Optic Nerve Head in Glaucomatous Optic Neuropathy

The Optic Nerve Head in Glaucomatous Optic Neuropathy Abstract Primary open-angle glaucoma, the most common form of glaucoma, is characterized by irreversible loss of axons from the optic nerve. Previous research in humans and monkeys with glaucoma suggests that the site of damage to the axons is at the level of the lamina cribrosa in the optic nerve head. In the glaucomatous optic nerve head, progressive cupping of the optic disc results from compression, stretching, and remodeling of the connective tissue (extracellular matrix) of the lamina cribrosa. Astrocytes are the major cell type in the optic nerve and may participate actively in the remodeling of the extracellular matrix. There may be individual variability in the composition, structure, or reactive processes of the tissue supporting the axons in the optic nerve that may explain the variations in the nature and degree of cupping in response to intraocular pressure and in the progression of the neuropathy. We present evidence of specific changes in the extracellular matrix of the lamina cribrosa and the role of astrocytes in glaucomatous optic neuropathy. Future studies focused on developing therapies directed at preventing or controling damage to the extracellular matrix may help improve the outcome of the management of glaucoma. References 1. Kolker AE, Hetherington JR. Primary open-angle glaucoma . In: Kolker AE, Hetherington JR, eds. Becker and Shaffer's Diagnosis and Therapy of the Glaucomas . 5th ed. St Louis, Mo: CV Mosby Co; 1983:55-63. 2. Hayreh SS. Pathogenesis of optic nerve damage and visual field defects . In: Heilman K, Richardson KT, eds. Glaucoma: Conceptions of a Disease . Philadelphia, Pa: WB Saunders Co; 1978:104-180. 3. Maumanee AE. The pathogenesis of visual field loss in glaucoma . In: Brock-hurst RJ, Boruckoff AS, Hutchison BT, eds. Controversy in Ophthalmology . Philadelphia, Pa: WB Saunders Co; 1977:301-311. 4. Anderson DA. Ultrastructure of human and monkey lamina cribrosa and optic nerve head . Arch Ophthalmol . 1969;82:800-814.Crossref 5. Elkinton AR, Inman CBE, Steart PV. The structure of the lamina cribrosa of the human eye: an immunocytochemical and electron microscopical study . Eye . 1990;4:42-57.Crossref 6. Hernandez MR. Extracellular matrix macromolecules of the lamina cribrosa: a pressure-sensitive connective tissue . J Glaucoma . 1993;2:50-57.Crossref 7. Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma . Am J Ophthalmol . 1983;95:673-691. 8. Tengroth B, Rehnberg M, Amitzboll T. A comparative analysis of the collagen type and distribution in the trabecular meshwork, sclera, lamina cribrosa and the optic nerve head in the human eye . Acta Ophthalmol . 1985;173( (suppl) ): 91-93. 9. Hernandez MR, Andrzejewska WM, Neufeld AH. Changes in the extracellular matrix of the human optic nerve head in primary open-angle glaucoma . Am J Ophthalmol . 1990;109:180-188. 10. Morrison J, Dorman-Pease ME, Dunkelberger GR, Quigley HA. Optic nerve head extracellular matrix in primary optic atrophy and experimental glaucoma . Arch Ophthalmol . 1990;108:1020-1024.Crossref 11. Hernandez MR. Ultrastructural immunocytochemical analysis of elastin in the human lamina cribrosa: changes in elastic fibers in primary open angle glaucoma . Invest Ophthalmol Vis Sci . 1992;33:2891-2903. 12. Fukuchi T, Sawaguchi S, Hara H Shirakashi M, Iwata K. Extracellular matrix changes of the optic nerve lamina cribrosa in monkey eyes with experimentally chronic glaucoma . Graefes Arch Clin Exp Ophthalmol . 1992;230:421-427.Crossref 13. Hernandez MR, Ye H, Roy S. Collagen type IV gene expression in human optic nerve heads with primary open-angle glaucoma . Exp Eye Res . 1994;59:41-52.Crossref 14. Raghow R. The role of extracellular matrix in postinflammatory wound healing and fibrosis . FASEB J . 1994;8:823-831. 15. Hernandez MR, Wang N, Hanley NM, Neufeld AH. Localization of collagen types I and IV mRNAs in human optic nerve head by in situ hybridization . Invest Ophthalmol Vis Sci . 1991;32:2169-2177. 16. Ye H, Yang J, Hernandez MR. Localization of collagen type III mRNA in normal human optic nerve heads . Exp Eye Res . 1994;58:53-63.Crossref 17. Roggendorf W, Opitz H, Schuppan D. Altered expression of collagen type VI in brain vessels of patients with chronic hypertension: a comparison with the distribution of collagen IV and procollagen III . Acta Neuropathol . 1988;77:55-60.Crossref 18. Quigley HA, Dorman-Pease ME, Brown AE. Quantitative study of collagen and elastin of the optic nerve head and sclera in human and experimental glaucoma . Curr Eye Res . 1991;10:877-888.Crossref 19. Mercer RR, Crapo JD. Spatial distribution of collagen and elastin fibers in the lungs . J Appl Physiol . 1990;69:756-765. 20. Hernandez MR, Luo XX, Igoe F, Neufeld AH. Extracellular matrix of the human lamina cribrosa . Am J Ophthalmol . 1987;104:567-576. 21. Morrison JC, L'Hernault NL, Jerdan JA, Quigley HA. Ultrastructural location of extracellular matrix components in the optic nerve head . Arch Ophthalmol . 1989;107:123-129.Crossref 22. Wang TS, Lindsey JD, Weinreb RN. Laminin isoform distribution in the human optic nerve head . Exp Eye Res . 1996;62:121-125.Crossref 23. Steele KM, Johnson EC, Deppmeier LMH, Morrison JC. Distribution of integrin subunits and associated ligands in the primate optic nerve head . Invest Ophthalmol Vis Sci . 1994;35:1849. Abstract. 24. Johnson EC, Deppmeier LMH, Steele KM, Morrison JC. Integrin subunit distribution in normal and glaucomatous human optic nerve heads . Invest Ophthalmol Vis Sci . 1994;35:1850. Abstract. 25. Minkler DS, Spaeth GL. Optic nerve damage in glaucoma . Surv Ophthalmol . 1981;26:128-148.Crossref 26. Eddleston M, Mucke L. Molecular profile of reactive astrocytes: implications for their role in neurological diseases . Neuroscience . 1993;54:15-36.Crossref 27. Norenberg MD. Astrocyte responses to central nervous system injury . J Neuropathol Exp Neurol . 1994;53:213-220.Crossref 28. Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ. The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient . Invest Ophthalmol Vis Sci . 1995;36:1163-1172. 29. Fukuchi T, Sawaguchi S, Yue BY, Iwata K, Hara H, Kaiya T. Sulfated proteoglycans in the lamina cribrosa of normal monkey eyes and monkey eyes with laser-induced glaucoma . Exp Eye Res . 1994;58:231-243.Crossref 30. Caparas VL, Cintron C, Hernandez-Neufeld MR. Immunohistochemistry of proteoglycans in human lamina cribrosa . Am J Ophthalmol . 1991;112:489-495. 31. Morrison JC, Rask P, Johnson EC, Deppmeir L. Chondroitin sulfate proteoglycan distribution in the primate optic nerve head . Invest Ophthalmol Vis Sci . 1994;35:838-845. 32. Gong H, Ye W, Freddo TF, Hernandez MR. Hyaluronic acid in the normal and glaucomatous optic nerve. Exp Eye Res. In press. 33. Ruoslahti E, Yamaguchi Y. Proteoglycans as modulators of growth factor activities . Cell . 1991;64:867-869.Crossref 34. Hernandez MR, Yang J, Ye H. Activation of elastin mRNA expression in human optic nerve heads with primary open-angle glaucoma . J Glaucoma . 1994;3:214-225.Crossref 35. Pena JDO, Roy S, Hernandez MR. Tropoelastin gene expression in optic nerve heads of normal and glaucomatous subjects . Matrix Biol . 1996;15:323-330.Crossref 36. Dallas SL, Miyazono K, Skerry TM, Mundy GR, Bonewald LF. Dual role for the latent transforming growth factor-β binding protein in storage of latent TGF-β in the extracellular matrix and as a structural protein . J Cell Biol . 1995;131:539-549.Crossref 37. Quigley HA, Brown A, Dorman-Pease ME. Alterations in elastin of the optic nerve head in human and experimental glaucoma . Br J Ophthalmol . 1991;75:552-557.Crossref 38. Zeimer RC, Ogura Y. The relation between glaucomatous damage and optic nerve head mechanical compliance . Arch Ophthalmol . 1989;107:1232-1234.Crossref 39. Burgoyne CF, Quigley HA, Thompson HW, Vitale S, Varma R. Early changes in optic disc compliance and surface position in experimental glaucoma . Ophthalmol . 1995;102:1800-1809.Crossref 40. Keeley FW, Alatawi A. Response of aortic elastin synthesis and accumulation to developing hypertension and the inhibitory effect of colchicine on this response . Lab Invest . 1991;64:499-507. 41. Raff MC. Glial cell diversification in the rat optic nerve . Science . 1989;243:1450-1455.Crossref 42. Fulton BP, Burne JF, Raff MC. Visualization of 0-2A progenitor cells in developing and adult rat optic nerve by quisqualate-stimulated cobalt uptake . J Neurosci . 1992;12:4816-4833. 43. Ye H, Hernandez MR. Heterogeneity of astrocytes in human optic nerve head . J Comp Neurol . 1995;362:441-452.Crossref 44. Wilkin GP, Marriott, DR, Cholewinski AJ. Astocyte heterogeneity . Trends Neurosci . 1990;13:43-46.Crossref 45. Seki T, Arai Y. Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system . Neurosci Res . 1993;17:265-290.Crossref 46. Vaughn DE, Bjorkman PJ. The (Greek) key to structures of neural cell adhesion molecules . Neuron . 1996;16:261-273.Crossref 47. Hatten ME, Liem RKH, Shelanski ML, Mason CA. Astroglia in CNS injury . Glia . 1991;4:233-243.Crossref 48. Hernandez MR, Hanninen LA, Hubbard WC, Kaufman PL, Weber AJ. Astrocyte responses in the lamina cribrosa in pressure dependent glaucoma in monkeys . Invest Ophthalmol Vis Sci . 1995;36( (suppl) ):S606. Abstract. 49. Ajemian A, Ness R, David S. Tenascin in the injured rat optic nerve and in non-neuronal cells in vitro: potential role in neural repair . J Comp Neurol . 1994;340:233-242.Crossref 50. Taylor AW, Pena JDO, Hernandez MR. Cytokines produced by explanted human optic nerve heads of normal and glaucomatous eyes . Invest Ophthalmol Vis Sci . 1995;36( (suppl) ):S607. Abstract. 51. Tripathi BJ, Li J, Chalam KV, Tripathi RC. Upregulated expression of gamma-interferon and transforming growth factor-β1 in the optic nerve head of glaucomatous eyes . Invest Ophthalmol Vis Sci . 1996;37( (suppl) ):S411. Abstract. 52. Logan A, Berry M. Transforming growth factor-β1 and basic fibroblast growth factor in the injured CNS . Trends Pharmacol Sci . 1993;14:337-342.Crossref 53. Edvardsen K, Chen W, Rucklidge G, Walsh FS, Öbrink B, Bock E. Transmembrane neural cell adhesion molecule (NCAM), but not glycosyl-phosphatidylinsitol-anchored NCAM, down-regulates secretion of matrix metalloproteinases . Proc Natl Acad Sci USA . 1993;90:11463-11467.Crossref 54. Müller HW, Junghans U, Kappler J. Astroglial neurotrophic and neurite-promoting factors . Pharmacol Ther . 1995;65:1-18.Crossref 55. Johnson EC, Deppmeier MH, Varner AC, Morrison JC. Matrix metalloproteinases and TIMP-1 in the primate optic nerve head and retina . Invest Opthalmol Vis Sci . 1993;34( (suppl) ):1283. Abstract. 56. Emi K, Sawaguchi S, Yue B, Hara H, Fukuchi T, Iwata K. Increased levels of matrix metalloproteinase in the optic nerve head of monkey eyes with laser-induced glaucoma . Invest Ophthalmol Vis Sci . 1994;35( (suppl) ):1283. Abstract. 57. Bourret LA, Rodan GA. The role of calcium and the inhibition of cAMP accumulation in epiphyseal cartilage cells exposed to physiological pressure . J Cell Physiol . 1976;88:353-362.Crossref 58. Yousefian J, Firouzian F, Shanfeld J, Ngan P, Lanese R, Davidovitch Z. A new experimental model for studying the response of periodontal ligament cells to hydrostatic pressure . Am J Orthod Dentofacial Orthop . 1995;108:401-409. 59. He Y, Grinnel F. Stress relaxation of fibroblasts activates a cyclic AMP signaling pathway . J Cell Biol . 1994;126:457-464.Crossref 60. Ozawa H, Imamura K, Abe E, et al. Effect of a continuously applied pressure on mouse osteoblast-like cells (MC3T3-E1) in vitro . J Cell Physiol . 1990;142:177-185.Crossref 61. Nagel T, Resnick N, Atkinson WJ, Dewey CF Jr, Gimbrone MA Jr. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells . J Clin Invest . 1994;94:885-891.Crossref 62. Van Buskirk EM, Cioffi GA. Glaucomatous optic neuropathy . Am J Ophthalmol . 1992;113:447-452. 63. Quigley HA. The relationship of intraocular pressure and glaucomatous optic neuropathy . In: Drance SM, Van Burskik EM, Neufeld AH, eds. Pharmacology of Glaucoma . Baltimore, Md: Williams & Williams; 1992:265-272. 64. Brubacker RF. Delayed functional loss in glaucoma . Am J Ophthalmol . 1996;121:473-483. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Ophthalmology American Medical Association

The Optic Nerve Head in Glaucomatous Optic Neuropathy

Loading next page...
 
/lp/american-medical-association/the-optic-nerve-head-in-glaucomatous-optic-neuropathy-AaYnfUxg3e
Publisher
American Medical Association
Copyright
Copyright © 1997 American Medical Association. All Rights Reserved.
ISSN
0003-9950
eISSN
1538-3687
DOI
10.1001/archopht.1997.01100150391013
Publisher site
See Article on Publisher Site

Abstract

Abstract Primary open-angle glaucoma, the most common form of glaucoma, is characterized by irreversible loss of axons from the optic nerve. Previous research in humans and monkeys with glaucoma suggests that the site of damage to the axons is at the level of the lamina cribrosa in the optic nerve head. In the glaucomatous optic nerve head, progressive cupping of the optic disc results from compression, stretching, and remodeling of the connective tissue (extracellular matrix) of the lamina cribrosa. Astrocytes are the major cell type in the optic nerve and may participate actively in the remodeling of the extracellular matrix. There may be individual variability in the composition, structure, or reactive processes of the tissue supporting the axons in the optic nerve that may explain the variations in the nature and degree of cupping in response to intraocular pressure and in the progression of the neuropathy. We present evidence of specific changes in the extracellular matrix of the lamina cribrosa and the role of astrocytes in glaucomatous optic neuropathy. Future studies focused on developing therapies directed at preventing or controling damage to the extracellular matrix may help improve the outcome of the management of glaucoma. References 1. Kolker AE, Hetherington JR. Primary open-angle glaucoma . In: Kolker AE, Hetherington JR, eds. Becker and Shaffer's Diagnosis and Therapy of the Glaucomas . 5th ed. St Louis, Mo: CV Mosby Co; 1983:55-63. 2. Hayreh SS. Pathogenesis of optic nerve damage and visual field defects . In: Heilman K, Richardson KT, eds. Glaucoma: Conceptions of a Disease . Philadelphia, Pa: WB Saunders Co; 1978:104-180. 3. Maumanee AE. The pathogenesis of visual field loss in glaucoma . In: Brock-hurst RJ, Boruckoff AS, Hutchison BT, eds. Controversy in Ophthalmology . Philadelphia, Pa: WB Saunders Co; 1977:301-311. 4. Anderson DA. Ultrastructure of human and monkey lamina cribrosa and optic nerve head . Arch Ophthalmol . 1969;82:800-814.Crossref 5. Elkinton AR, Inman CBE, Steart PV. The structure of the lamina cribrosa of the human eye: an immunocytochemical and electron microscopical study . Eye . 1990;4:42-57.Crossref 6. Hernandez MR. Extracellular matrix macromolecules of the lamina cribrosa: a pressure-sensitive connective tissue . J Glaucoma . 1993;2:50-57.Crossref 7. Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma . Am J Ophthalmol . 1983;95:673-691. 8. Tengroth B, Rehnberg M, Amitzboll T. A comparative analysis of the collagen type and distribution in the trabecular meshwork, sclera, lamina cribrosa and the optic nerve head in the human eye . Acta Ophthalmol . 1985;173( (suppl) ): 91-93. 9. Hernandez MR, Andrzejewska WM, Neufeld AH. Changes in the extracellular matrix of the human optic nerve head in primary open-angle glaucoma . Am J Ophthalmol . 1990;109:180-188. 10. Morrison J, Dorman-Pease ME, Dunkelberger GR, Quigley HA. Optic nerve head extracellular matrix in primary optic atrophy and experimental glaucoma . Arch Ophthalmol . 1990;108:1020-1024.Crossref 11. Hernandez MR. Ultrastructural immunocytochemical analysis of elastin in the human lamina cribrosa: changes in elastic fibers in primary open angle glaucoma . Invest Ophthalmol Vis Sci . 1992;33:2891-2903. 12. Fukuchi T, Sawaguchi S, Hara H Shirakashi M, Iwata K. Extracellular matrix changes of the optic nerve lamina cribrosa in monkey eyes with experimentally chronic glaucoma . Graefes Arch Clin Exp Ophthalmol . 1992;230:421-427.Crossref 13. Hernandez MR, Ye H, Roy S. Collagen type IV gene expression in human optic nerve heads with primary open-angle glaucoma . Exp Eye Res . 1994;59:41-52.Crossref 14. Raghow R. The role of extracellular matrix in postinflammatory wound healing and fibrosis . FASEB J . 1994;8:823-831. 15. Hernandez MR, Wang N, Hanley NM, Neufeld AH. Localization of collagen types I and IV mRNAs in human optic nerve head by in situ hybridization . Invest Ophthalmol Vis Sci . 1991;32:2169-2177. 16. Ye H, Yang J, Hernandez MR. Localization of collagen type III mRNA in normal human optic nerve heads . Exp Eye Res . 1994;58:53-63.Crossref 17. Roggendorf W, Opitz H, Schuppan D. Altered expression of collagen type VI in brain vessels of patients with chronic hypertension: a comparison with the distribution of collagen IV and procollagen III . Acta Neuropathol . 1988;77:55-60.Crossref 18. Quigley HA, Dorman-Pease ME, Brown AE. Quantitative study of collagen and elastin of the optic nerve head and sclera in human and experimental glaucoma . Curr Eye Res . 1991;10:877-888.Crossref 19. Mercer RR, Crapo JD. Spatial distribution of collagen and elastin fibers in the lungs . J Appl Physiol . 1990;69:756-765. 20. Hernandez MR, Luo XX, Igoe F, Neufeld AH. Extracellular matrix of the human lamina cribrosa . Am J Ophthalmol . 1987;104:567-576. 21. Morrison JC, L'Hernault NL, Jerdan JA, Quigley HA. Ultrastructural location of extracellular matrix components in the optic nerve head . Arch Ophthalmol . 1989;107:123-129.Crossref 22. Wang TS, Lindsey JD, Weinreb RN. Laminin isoform distribution in the human optic nerve head . Exp Eye Res . 1996;62:121-125.Crossref 23. Steele KM, Johnson EC, Deppmeier LMH, Morrison JC. Distribution of integrin subunits and associated ligands in the primate optic nerve head . Invest Ophthalmol Vis Sci . 1994;35:1849. Abstract. 24. Johnson EC, Deppmeier LMH, Steele KM, Morrison JC. Integrin subunit distribution in normal and glaucomatous human optic nerve heads . Invest Ophthalmol Vis Sci . 1994;35:1850. Abstract. 25. Minkler DS, Spaeth GL. Optic nerve damage in glaucoma . Surv Ophthalmol . 1981;26:128-148.Crossref 26. Eddleston M, Mucke L. Molecular profile of reactive astrocytes: implications for their role in neurological diseases . Neuroscience . 1993;54:15-36.Crossref 27. Norenberg MD. Astrocyte responses to central nervous system injury . J Neuropathol Exp Neurol . 1994;53:213-220.Crossref 28. Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ. The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient . Invest Ophthalmol Vis Sci . 1995;36:1163-1172. 29. Fukuchi T, Sawaguchi S, Yue BY, Iwata K, Hara H, Kaiya T. Sulfated proteoglycans in the lamina cribrosa of normal monkey eyes and monkey eyes with laser-induced glaucoma . Exp Eye Res . 1994;58:231-243.Crossref 30. Caparas VL, Cintron C, Hernandez-Neufeld MR. Immunohistochemistry of proteoglycans in human lamina cribrosa . Am J Ophthalmol . 1991;112:489-495. 31. Morrison JC, Rask P, Johnson EC, Deppmeir L. Chondroitin sulfate proteoglycan distribution in the primate optic nerve head . Invest Ophthalmol Vis Sci . 1994;35:838-845. 32. Gong H, Ye W, Freddo TF, Hernandez MR. Hyaluronic acid in the normal and glaucomatous optic nerve. Exp Eye Res. In press. 33. Ruoslahti E, Yamaguchi Y. Proteoglycans as modulators of growth factor activities . Cell . 1991;64:867-869.Crossref 34. Hernandez MR, Yang J, Ye H. Activation of elastin mRNA expression in human optic nerve heads with primary open-angle glaucoma . J Glaucoma . 1994;3:214-225.Crossref 35. Pena JDO, Roy S, Hernandez MR. Tropoelastin gene expression in optic nerve heads of normal and glaucomatous subjects . Matrix Biol . 1996;15:323-330.Crossref 36. Dallas SL, Miyazono K, Skerry TM, Mundy GR, Bonewald LF. Dual role for the latent transforming growth factor-β binding protein in storage of latent TGF-β in the extracellular matrix and as a structural protein . J Cell Biol . 1995;131:539-549.Crossref 37. Quigley HA, Brown A, Dorman-Pease ME. Alterations in elastin of the optic nerve head in human and experimental glaucoma . Br J Ophthalmol . 1991;75:552-557.Crossref 38. Zeimer RC, Ogura Y. The relation between glaucomatous damage and optic nerve head mechanical compliance . Arch Ophthalmol . 1989;107:1232-1234.Crossref 39. Burgoyne CF, Quigley HA, Thompson HW, Vitale S, Varma R. Early changes in optic disc compliance and surface position in experimental glaucoma . Ophthalmol . 1995;102:1800-1809.Crossref 40. Keeley FW, Alatawi A. Response of aortic elastin synthesis and accumulation to developing hypertension and the inhibitory effect of colchicine on this response . Lab Invest . 1991;64:499-507. 41. Raff MC. Glial cell diversification in the rat optic nerve . Science . 1989;243:1450-1455.Crossref 42. Fulton BP, Burne JF, Raff MC. Visualization of 0-2A progenitor cells in developing and adult rat optic nerve by quisqualate-stimulated cobalt uptake . J Neurosci . 1992;12:4816-4833. 43. Ye H, Hernandez MR. Heterogeneity of astrocytes in human optic nerve head . J Comp Neurol . 1995;362:441-452.Crossref 44. Wilkin GP, Marriott, DR, Cholewinski AJ. Astocyte heterogeneity . Trends Neurosci . 1990;13:43-46.Crossref 45. Seki T, Arai Y. Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system . Neurosci Res . 1993;17:265-290.Crossref 46. Vaughn DE, Bjorkman PJ. The (Greek) key to structures of neural cell adhesion molecules . Neuron . 1996;16:261-273.Crossref 47. Hatten ME, Liem RKH, Shelanski ML, Mason CA. Astroglia in CNS injury . Glia . 1991;4:233-243.Crossref 48. Hernandez MR, Hanninen LA, Hubbard WC, Kaufman PL, Weber AJ. Astrocyte responses in the lamina cribrosa in pressure dependent glaucoma in monkeys . Invest Ophthalmol Vis Sci . 1995;36( (suppl) ):S606. Abstract. 49. Ajemian A, Ness R, David S. Tenascin in the injured rat optic nerve and in non-neuronal cells in vitro: potential role in neural repair . J Comp Neurol . 1994;340:233-242.Crossref 50. Taylor AW, Pena JDO, Hernandez MR. Cytokines produced by explanted human optic nerve heads of normal and glaucomatous eyes . Invest Ophthalmol Vis Sci . 1995;36( (suppl) ):S607. Abstract. 51. Tripathi BJ, Li J, Chalam KV, Tripathi RC. Upregulated expression of gamma-interferon and transforming growth factor-β1 in the optic nerve head of glaucomatous eyes . Invest Ophthalmol Vis Sci . 1996;37( (suppl) ):S411. Abstract. 52. Logan A, Berry M. Transforming growth factor-β1 and basic fibroblast growth factor in the injured CNS . Trends Pharmacol Sci . 1993;14:337-342.Crossref 53. Edvardsen K, Chen W, Rucklidge G, Walsh FS, Öbrink B, Bock E. Transmembrane neural cell adhesion molecule (NCAM), but not glycosyl-phosphatidylinsitol-anchored NCAM, down-regulates secretion of matrix metalloproteinases . Proc Natl Acad Sci USA . 1993;90:11463-11467.Crossref 54. Müller HW, Junghans U, Kappler J. Astroglial neurotrophic and neurite-promoting factors . Pharmacol Ther . 1995;65:1-18.Crossref 55. Johnson EC, Deppmeier MH, Varner AC, Morrison JC. Matrix metalloproteinases and TIMP-1 in the primate optic nerve head and retina . Invest Opthalmol Vis Sci . 1993;34( (suppl) ):1283. Abstract. 56. Emi K, Sawaguchi S, Yue B, Hara H, Fukuchi T, Iwata K. Increased levels of matrix metalloproteinase in the optic nerve head of monkey eyes with laser-induced glaucoma . Invest Ophthalmol Vis Sci . 1994;35( (suppl) ):1283. Abstract. 57. Bourret LA, Rodan GA. The role of calcium and the inhibition of cAMP accumulation in epiphyseal cartilage cells exposed to physiological pressure . J Cell Physiol . 1976;88:353-362.Crossref 58. Yousefian J, Firouzian F, Shanfeld J, Ngan P, Lanese R, Davidovitch Z. A new experimental model for studying the response of periodontal ligament cells to hydrostatic pressure . Am J Orthod Dentofacial Orthop . 1995;108:401-409. 59. He Y, Grinnel F. Stress relaxation of fibroblasts activates a cyclic AMP signaling pathway . J Cell Biol . 1994;126:457-464.Crossref 60. Ozawa H, Imamura K, Abe E, et al. Effect of a continuously applied pressure on mouse osteoblast-like cells (MC3T3-E1) in vitro . J Cell Physiol . 1990;142:177-185.Crossref 61. Nagel T, Resnick N, Atkinson WJ, Dewey CF Jr, Gimbrone MA Jr. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells . J Clin Invest . 1994;94:885-891.Crossref 62. Van Buskirk EM, Cioffi GA. Glaucomatous optic neuropathy . Am J Ophthalmol . 1992;113:447-452. 63. Quigley HA. The relationship of intraocular pressure and glaucomatous optic neuropathy . In: Drance SM, Van Burskik EM, Neufeld AH, eds. Pharmacology of Glaucoma . Baltimore, Md: Williams & Williams; 1992:265-272. 64. Brubacker RF. Delayed functional loss in glaucoma . Am J Ophthalmol . 1996;121:473-483.

Journal

Archives of OphthalmologyAmerican Medical Association

Published: Mar 1, 1997

References