Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Sparing of Motor Function After Cortical Injury: A New Perspective on Underlying Mechanisms

Sparing of Motor Function After Cortical Injury: A New Perspective on Underlying Mechanisms Abstract Historically, many theories have been offered to explain recovery of function following permanent brain injury. Because specific functional deficits often occur after injury to certain neuroanatomical locations, it has been tempting to suggest that within the brain, structure equals function (this interpretation, of course, has its roots in "phrenology," the 19th-century practice of detecting mental and behavioral traits by examining the skull's shape). Views that were common until recently emphasized structural and functional rigidity in the brain, which would seem to provide little opportunity for the occurrence of compensation. However, the observation that a considerable amount of spontaneous functional recovery occurs after many permanent brain lesions requires some explanation for the recovery that involves modification of intact portions of the brain. Recent research has provided data that reveal several forms of brain plasticity, including changes in neurotransmitter sensitivity, collateral sprouting, and diaschisis. Evidence supporting claims that beneficial behavioral recovery occurs through such physiological modifications in the brain are abundant in the literature,1-4 although, in general, there has not been any empirical establishment of causality. References 1. Boyeson MG. Neurochemical alterations after brain injury: clinical implications for pharmacologic rehabilitation . Neurorehabilitation . 1991;1:33-43. 2. Feeney DM, Sutton RL. Pharmacotherapy for recovery of function after brain injury . Crit Rev Neurobiol . 1987;13:135-197. 3. Finger S, Stein D. Brain Damage and Recovery: Research and Clinical Perspectives . Orlando, Fla: Academic Press Inc; 1982. 4. Goldstein LB, Matchar DB, Morgenlander JC, Davis JN. Drugs influence the recovery of function after stroke . Stroke . 1990;21:179. 5. Jackson JH. Lectures on the diagnosis of tumours in the brain . Med Times Gazette . 1873;2:139ff. 6. Stricker EM, Zigmond MJ. Brain monoamines, homeostasis, and adaptive behavior . In: Mountcastle VB, Bloom FE, Geiger SR, eds. Handbook of Physiology—the Nervous System . Baltimore, Md: Waverly Press; 1986;4:677-700. 7. Liu CN, Chambers WW. Intraspinal sprouting of dorsal root axons . Arch Neurol Psychiatry . 1958;79:46-61.Crossref 8. McCouch GP, Austin GM, Liu CN, Liu CY. Sprouting as a cause of spasticity . J Neurophysiol . 1958;21:205-216. 9. Bowen FP, Karpiak SE, Demirjian C, Katzman R. Sprouting of noradrenergic nerve terminals subsequent to freeze lesions of rabbit cerebral cortex . Brain Res . 1975;83:1-14.Crossref 10. Moore RY, Bjorklund A, Stenevi U. Plastic changes in the adrenergic innervation of the rat septal area in response to denervation . Brain Res . 1971;33:13-35.Crossref 11. von Monakow C. Gehirpathologie . Vienna, Austria: A Holder; 1905;1:240-248. 12. von Monakow C; Harris G, trans. In: Pribram KH, ed. Brain and Behavior, I: Mood States and Mind . Baltimore, Md: Penguin Books Limited; 1969:27-36. 13. Feeney DM, Gonzalez A, Law WA. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury . Science . 1982; 217:855-857.Crossref 14. Boyeson MG, Krobert KA, Grade CM, Scherer PJ. Unilateral but not bilateral locus ceruleus lesions facilitate recovery from sensorimotor cortex injury . Pharmacol Biochem Behav . 1992;43:771-777.Crossref 15. Boyeson MG, Krobert KA. Cerebellar norepinephrine infusions facilitate recovery after sensorimotor cortex injury . Brain Res Bull . 1992;29:435-439.Crossref 16. Hovda DA, Feeney DM. Amphetamine with experience promotes recovery of locomotor function after unilateral frontal cortex injury in the cat . Brain Res . 1984;298:358-361.Crossref 17. Spear PD. Behavioral and neurophysiological consequences of visual cortex damage . In: Sprague JM, Epstein AN, eds. Progress in Psychobiology and Physiological Psychology . Orlando, Fla: Academic Press Inc; 1977;8:45-83. 18. Munk H. Zur physiologie der grosshirnrinde . Berl Klin Wochenschr . 1877; 14:505-506. 19. Glees P, Cole J. Recovery of skilled motor functions after small repeated lesions of motor cortex in macaque . J Neurophysiol . 1950;13:137-148. 20. Glassman RB. Recovery following sensorimotor cortical damage: evoked potentials, brain stimulation and motor control . Exp Neurol . 1971;33:16-29.Crossref 21. Glassman RB, Malamut BL. Recovery from electroencephalographic slowing and reduced evoked potentials after somatosensory cortical damage in cats . Behav Biol . 1976;17:333-354.Crossref 22. Neafsey EJ, Bold EL, Haas G, et al. The organization of rat motor cortex: a microstimulation mapping study . Brain Res Rev . 1986;11:77-96.Crossref 23. Hall RD, Lindholm EP. Organization of motor and somatosensory neocortex in the albino rat . Brain Res . 1974;66:23-28.Crossref 24. Boyeson MG, Feeney DM, Dail WG. Cortical microstimulation thresholds adjacent to a sensorimotor cortex injury . J Neurotrauma . 1991;8:205-217.Crossref 25. Jenkins WM, Merzenich MM, Recanzone G. Neocortical representational dynamics in adult primates: implications for neuropsychology . Neuropsychologia . 1990;28:573-584.Crossref 26. Wong MCW, Haley EC Jr. Calcium antagonists: stroke therapy coming of age . Stroke . 1990;21:494-501.Crossref 27. Hewlitt K, Corbett D. Combined treatment with MK-801 and nicardipine reduces global ischemic damage in the gerbil . Stroke . 1992;23:82-86.Crossref 28. Rod MR, Auer RN. Combination therapy with nimodipine and dizocilpine in a rat model of transient forebrain ischemia . Stroke . 1992;23:725-732.Crossref 29. Andersen AB, Finger S, Andersen CS, Hoagland N. Sensorimotor cortical lesion effects and treatment with nimodipine . Physiol Behav . 1990;47:1045-1052.Crossref 30. Triggle DJ. Calcium antagonists . Stroke . 1990;21:IV49-IV58. 31. Gustafson I, Westerberg E, Wieloch T. Protection against ischemia-induced neuronal damage by the α-2 adrenoceptor antagonist idazoxan: influence of time of administration and possible mechanisms of action . J Cereb Blood Flow Metab . 1990;10:885-894.Crossref 32. Gustafson I, Westerberg E, Weiloch T. Extracellular brain cortical levels of noradrenaline in ischemia: effects of desipramine and postischemic administration of idazoxan . Exp Brain Res . 1991;86:555-561.Crossref 33. Hayes RL, Jenkins LW, Lyeth BG. Neurotransmitter-mediated mechanisms of traumatic brain injury: acetylcholine and excitatory amino acids . J Neurotrauma . 1992;9:173-187.Crossref 34. Sachs E Jr. Acetylcholine and serotonin in the spinal fluid . J Neurosurg . 1957; 14:22-27.Crossref 35. Saija A, Robinson SE, Lyeth BG, et al. The effects of scopolamine and traumatic brain injury on central cholinergic neurons . J Neurotrauma . 1988;5: 161-170.Crossref 36. Lyeth BG, Dixon CR, Jenkins LW, et al. Effects of scopolamine treatment on long-term behavioral deficits following concussive brain injury to the rat . Brain Res . 1988;452:39-48.Crossref 37. Robinson SE, Fox SD, Posner MG, et al. The effect of M1 muscarinic blockade on behavior following traumatic brain injury in the rat . Brain Res . 1990:511: 141-148.Crossref 38. Lyeth BG, Ray M, Hamm RJ, et al. Post-injury scopolamine administration in experimental traumatic brain injury . Brain Res . 1992;569:281-286.Crossref 39. Sims JS, Jones TA, Fulton RL, Shapiro LE, Lindner MD, Schallert T. Benzodiazepine effects on recovery of function linked to trans-neuronal morphological events . Soc Neurosci . 1990:16:342. Abstract. 40. Schallert T, Hernandez TD, Barth TM. Recovery of function after brain damage: severe and chronic disruption by diazepam . Brain Res . 1986;379:104-111.Crossref 41. Hernandez TD, Jones GH, Schallert T. Co-administration of Ro 15-1788 prevents diazepam-induced retardation of recovery of function . Brain Res . 1989; 487:89-95.Crossref 42. Schallert T, Jones TA, Lindner MD. Multilevel transneuronal degeneration after brain damage . Stroke . 1990;21:143-146. 43. Brailowsky S, Knight RT, Blood K, Scabini D. Gamma-aminobutyric acid-induced potentiation of cortical hemiplegia . Brain Res . 1986;362:322-330.Crossref 44. Brailowsky S, Knight RT, Efron R. Phenytoin increases the severity of cortical hemiplegia in rats . Brain Res . 1986;376:71-77.Crossref 45. Boyeson MG. Neurotransmitter aspects of traumatic brain injury . In: Bach-y-Rita P, ed. Traumatic Brain Injury . New York, NY: Demos Publications; 1989:97-104. 46. Feeney DM, Sutton RL, Boyeson MG, Hovda DA, Dail WG. The locus coeruleus and cerebral metabolism: recovery of function after cortical injury . Physiol Psychol . 1985;13:197-203.Crossref 47. Boyeson MG, Feeney DM. Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury . Pharmacol Biochem Behav . 1990;35:497-501.Crossref 48. Feeney DM, Westerberg VS. Norepinephrine and brain damage: alpha noradrenergic pharmacology alters functional recovery after cortical trauma . Can J Psych . 1990;44:233-252.Crossref 49. Goldstein LB, MacMillan V. Acute unilateral sensorimotor cortex injury in rats blocks D-amphetamine-induced norepinephrine release in cerebellum . Soc Neurosci . 1991:17:1575. Abstract. 50. Sutton RL, Feeney DM. Alpha-adrenergic agonists and antagonists affect recovery and maintenance of beam-walking ability after sensorimotor cortex ablation in the rat . Restor Neurol Neurosci . 1992;4:1-11. 51. Boyeson MG, Callister T, Cavazos J. Biochemical and behavioral effects of a sensorimotor cortex injury in rats pretreated with the neurotoxin DSP-4 . Behav Neurosci . 1992;106:964-973.Crossref 52. Hovda DA, Feeney DM, Salo AA, Boyeson MG. Phenoxybenzamine but not haloperidol reinstates all motor and sensory deficits in cats fully recovered from sensori-motor cortex ablations . Soc Neurosci . 1983;9:1001. Abstract. 53. Stephens J, Goldberg G, Demopoulos JT. Clonidine reinstates deficits following recovery from sensorimotor cortex lesion in rats . Arch Phys Med Rehabil . 1986;67:666-667. 54. Goldstein LB, Coviello A, Miller GD, Davis JN. Norepinephrine depletion impairs motor recovery following sensorimotor cortex injury in the rat . Restor Neurol Neurosci . 1991;3:41-47. 55. Goldstein LB, Davis JN. Clonidine impairs recovery of beam walking after a sensorimotor cortex lesion in the rat . Brain Res . 1990;508:305-309.Crossref 56. Loughlin SE, Foote SL, Fallon JH. Locus coeruleus projections to cortex: topography, morphology and collateralization . Brain Res Bull . 1982;9:287-294.Crossref 57. Loughlin SE, Foote SL, Grzanna R. Efferent projections of nucleus locus coeruleus: morphologic subpopulations have different efferent targets . Neuroscience . 1986;18:307-319.Crossref 58. Crowley JN, Maas JW, Roth RH. Biochemical evidence for simultaneous activation of multiple locus coeruleus efferents . Life Sci . 1980;26:1373-1378.Crossref 59. Ross RA, Joh TH, Reis DJ. Reversible changes in the accumulation and activities of tyrosine hydroxylase and dopamine-beta-hydroxylase in neurons of nucleus locus coeruleus during the retrograde reaction . Brain Res . 1975;92:57-72.Crossref 60. Pickel VM, Krebs H, Bloom FE. Proliferation of norepinephrine-containing axons in rat cerebellar cortex after peduncle lesions . Brain Res . 1973;59:169-179.Crossref 61. Boyeson MG, Scherer PJ, Grade CM, Krobert KA. Unilateral locus ceruleus lesions facilitate motor recovery from cortical injury through supersensitivity mechanisms . Pharmacol Biochem Behav . 1993;44:297-305.Crossref 62. Boyeson MG, Bach-y-Rita P. Determinants of brain plasticity . J Neurol Rehab . 1989;3:35-57. 63. Devor M, Schneider GE. Neuroanatomical plasticity: the principle of conservation of total axonal arborization . In: Vital-Durand F, Jeannerod J, eds. Aspects of Neural Plasticity/Plasticite Nerveuse . Lyon, France: Colloque IN-SERM; 1975;43:191-202. 64. Hoffer BJ, Siggins GR, Oliver AP, Bloom FE. Activation of the pathway from locus coeruleus to rat Purkinje neurons: pharmacological evidence of noradrenergic central inhibition . J Pharmacol Exp Ther . 1973;184:553-569. 65. Brooks VB. The Neural Basis of Motor Control . New York, NY: Oxford University Press Inc; 1986. 66. Ito M. The Cerebellum and Neural Control . New York, NY: Raven Press; 1984. 67. Boyeson MG, Krobert KA, Scherer PJ, Grade CM. Reinstatement of motor deficits in brain-injured animals: the role of cerebellar norepinephrine . Restor Neurol Neurosci . 1993;5:283-290. 68. Boyeson MG, Feeney DM. Adverse effects of catecholaminergic drugs following unilateral cerebellar ablations . Restor Neurol Neurosci . 1991;3:227-233. 69. Gilman AG, Goodman LS, Rail TW, Muraad F. Pharmacol Basis Ther . 1985; 7:171. 70. Crosby EC, Schneider RC, De Jonge BR, Szonyi P. The alterations of tonus and movements through the interplay between the cerebral hemispheres and the cerebellum . J Comp Neurol . 1966;127:1-91.Crossref 71. Boyeson MG, Krobert KA, Grade CM. Cortical norepinephrine depletion protects animals from hemiparesis induced by sensorimotor cortex injury . Soc Neurosci . 1987;13:1665. Abstract. 72. Kennedy PR. Corticospinal, rubrospinal and rubro-olivary projections: a unifying hypothesis . Trends Neurosci . 1990;12:474-479.Crossref 73. Massion J. Red nucleus: past and future . Behav Brain Res . 1988;28:1-8.Crossref 74. Lawrence DG, Kuypers HGJM. The functional organization of the motor system in the monkey, II: the effects of lesions of the descending brain stem pathways . Brain . 1968;91:15-36.Crossref 75. Kennedy PR, Humphrey DR. The compensatory role of the parvocellular division of the red nucleus in operantly conditioned rats . Neurosci Res . 1987; 5:39-62.Crossref 76. Crisostomo EA, Duncan PW, Propst M, Dawson DV, Davis JN. Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients . Ann Neurol . 1988;23:94-97.Crossref 77. Homan R, Panksepp J, McSeweeny J, et al. d-Amphetamine effects on language and motor behaviors in a chronic stroke patient . Soc Neurosci . 1990; 16:439. Abstract. 78. Walker-Batson D, Unwin H, Curtis S, et al. Use of amphetamine in the treatment of aphasia . Restor Neurol Neurosci . 1992;4:47-50. 79. Walker-Batson D, Devous MD, Curtis SS, Unwin DH, Greenlee RG. Response to amphetamine to facilitate recovery from aphasia subsequent to stroke . In: Prescott TE, ed. Clinical Aphasiology . Austin, Tex: Pro-ed; 1991:20. 80. Seliger GM, Abrams GM, Horton A. Irish brogue after stroke . Stroke . 1992; 23:1655-1666.Crossref 81. Ojemann GA, Whitaker HA. The bilingual brain . Arch Neurol . 1978;35:409-412.Crossref 82. Demeurisse G, Verhas M, Capon A. Remote dysfunction in aphasic stroke patients . Stroke . 1991;22:1015-1020.Crossref 83. Robinson RG, Price TR. Post-stroke depressive disorders: a follow-up study of 103 patients . Stroke . 1982;13:635-641.Crossref 84. Finklestein SP, Weintraub RJ, Karmouz N, et al. Antidepressant drug treatment for post-stroke depression: retrospective study . Arch Phys Med Rehabil . 1987;68:772-776. 85. Lipsey JR, Robinson RG, Pearlson GD, et al. Nortriptyline treatment of post-stroke depression: a double-blind study . Lancet . 1984;1:297-300.Crossref 86. Reding MJ, Orto LA, Winter SW, et al. Antidepressant therapy after stroke: a double-blind trial . Arch Neurol . 1986;43:763-765.Crossref 87. Boyeson MG, Harmon RL. Effects of trazodone and desipramine on motor recovery in brain-injured rats . Am J Phys Med Rehabil . 1993;72:286-293.Crossref 88. Boyeson MG, Harmon RL. Effects of trazodone and desipramine on motor recovery in brain-injured rats . Arch Phys Med Rehabil . 1992;73:994. Abstract. 89. Osterholm JL, Bell J, Meyer R. Experimental effects of free serotonin on the brain and its relationship to brain injury . J Neurosurg . 1969;31:408-421.Crossref 90. Salzman SK, Puniak MA, Liu Z, Maitland-Heriot RP, Freeman GM, Agresta CA. The serotonin antagonist mianserin improves functional recovery following experimental spinal trauma . Ann Neurol . 1991;30:533-541.Crossref 91. Weintraub Ml. Methysergide (Sansert) treatment in acute stroke: community pilot study . Angiology . 1985;36:137.Crossref 92. Costa JL, Ito U, Spatz M, Klatzo I, Demiriian C. 5-Hydroxytryptamine accumulation in cerebrovascular injury . Nature . 1974:248:135.Crossref 93. Nakayama H, Ginsberg MD, Deitrich WD. S-emopamil, a novel calcium channel blocker and serotonin S2 antagonist, markedly reduces infarct size following middle cerebral artery occlusion in the rat . Neurology . 1988;38:1667-1673.Crossref 94. Boyeson MG, Harmon RL, Jones JL. Differential effects of fluoxetine, amitriptyline, and serotonin on functional motor recovery after sensorimotor cortex injury. Am J Phys Med Rehabil. In press. 95. Goldstein LB, Matchar DB, Morgenlander JC, Davis JN. Influence of drugs on the recovery of sensory-motor function after stroke . J Neurol Rehabil . 1990; 4:137-144. 96. Porch B, Wyckes J, Feeney DM. Haloperidol, thiazides and some antihypertensives slow recovery from aphasia . Soc Neurosci . 1985;11:52. Abstract. 97. Feeney DM, Baron JC. Diaschisis . Stroke . 1986;17:817-830.Crossref 98. Baron JC, Bousser MG, Comar D, Castaigne P. 'Crossed cerebellar diaschisis' in human supratentorial brain infarction . Trans Am Neurol Assoc . 1980;8: 120-135. 99. Di Peiro V, Chollet F, Dolan RJ, Thomas DJ, Frackowiak R. The functional nature of diaschisis . Stroke . 1990;21:1365-1369.Crossref 100. Rousseaux M, Steinling M. Crossed hemispheric diaschisis in unilateral cerebellar lesions . Stroke . 1992;23:511-514.Crossref 101. Yu J, Eidelberg E. Recovery of locomotor function in cats after localized cerebellar lesions . Brain Res . 1983;273:121-131.Crossref 102. Sanford PR, Spengler SE, Sawasky KB. Clonidine in the treatment of brain-stem spasticity: case report . Am J Phys Med Rehabil . 1992;71:301-303.Crossref 103. Fox R, Lehmkuhle SW, Bush RC. Stereopsis in the falcon . Science . 1977; 197:79-81.Crossref 104. Seyffarth H, Denny-Brown D. The grasp reflex and instinctive grasp reaction . Brain . 1948;73:109-183.Crossref 105. Marotta RF, Logan N, Potegal M, Glusman M, Gardner EL. Dopamine agonists induce recovery from surgically-induced septal rage . Nature . 1977;269:513-515.Crossref 106. Feeney DM, Hovda DA. Reinstatement of binocular depth perception by amphetamine and visual experience after visual cortex ablation . Brain Res . 1985; 342:352-356.Crossref 107. Kasamatsu T, Pettigrew JD, Ary M. Cortical recovery from effects of monocular deprivation: acceleration with norepinephrine and suppression with 6-hydroxydopamine . J Neurophysiol . 1981;45:254-266. 108. Hovda DA, Feeney DM. Haloperidol blocks amphetamine-induced recovery of binocular depth perception after bilateral visual cortex ablation in the cat . Proc West Pharmacol Soc . 1985;28:209-211. 109. Donaldson IML, Hawthorne ME. Coding of visual information by units of the cat cerebellar vermis . Exp Brain Res . 1979;34:27-48.Crossref 110. Frisby JP. An old illusion and a new theory of stereoscopic depth perception . Nature . 1984;307:592-593.Crossref 111. Stenton SP, Frisby JP, Mayhew JEW. Vertical disparity pooling and the induced effect . Nature . 1984;309:622-623.Crossref http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Neurology American Medical Association

Sparing of Motor Function After Cortical Injury: A New Perspective on Underlying Mechanisms

Loading next page...
 
/lp/american-medical-association/sparing-of-motor-function-after-cortical-injury-a-new-perspective-on-EBqqtWDZTn
Publisher
American Medical Association
Copyright
Copyright © 1994 American Medical Association. All Rights Reserved.
ISSN
0003-9942
eISSN
1538-3687
DOI
10.1001/archneur.1994.00540160107014
Publisher site
See Article on Publisher Site

Abstract

Abstract Historically, many theories have been offered to explain recovery of function following permanent brain injury. Because specific functional deficits often occur after injury to certain neuroanatomical locations, it has been tempting to suggest that within the brain, structure equals function (this interpretation, of course, has its roots in "phrenology," the 19th-century practice of detecting mental and behavioral traits by examining the skull's shape). Views that were common until recently emphasized structural and functional rigidity in the brain, which would seem to provide little opportunity for the occurrence of compensation. However, the observation that a considerable amount of spontaneous functional recovery occurs after many permanent brain lesions requires some explanation for the recovery that involves modification of intact portions of the brain. Recent research has provided data that reveal several forms of brain plasticity, including changes in neurotransmitter sensitivity, collateral sprouting, and diaschisis. Evidence supporting claims that beneficial behavioral recovery occurs through such physiological modifications in the brain are abundant in the literature,1-4 although, in general, there has not been any empirical establishment of causality. References 1. Boyeson MG. Neurochemical alterations after brain injury: clinical implications for pharmacologic rehabilitation . Neurorehabilitation . 1991;1:33-43. 2. Feeney DM, Sutton RL. Pharmacotherapy for recovery of function after brain injury . Crit Rev Neurobiol . 1987;13:135-197. 3. Finger S, Stein D. Brain Damage and Recovery: Research and Clinical Perspectives . Orlando, Fla: Academic Press Inc; 1982. 4. Goldstein LB, Matchar DB, Morgenlander JC, Davis JN. Drugs influence the recovery of function after stroke . Stroke . 1990;21:179. 5. Jackson JH. Lectures on the diagnosis of tumours in the brain . Med Times Gazette . 1873;2:139ff. 6. Stricker EM, Zigmond MJ. Brain monoamines, homeostasis, and adaptive behavior . In: Mountcastle VB, Bloom FE, Geiger SR, eds. Handbook of Physiology—the Nervous System . Baltimore, Md: Waverly Press; 1986;4:677-700. 7. Liu CN, Chambers WW. Intraspinal sprouting of dorsal root axons . Arch Neurol Psychiatry . 1958;79:46-61.Crossref 8. McCouch GP, Austin GM, Liu CN, Liu CY. Sprouting as a cause of spasticity . J Neurophysiol . 1958;21:205-216. 9. Bowen FP, Karpiak SE, Demirjian C, Katzman R. Sprouting of noradrenergic nerve terminals subsequent to freeze lesions of rabbit cerebral cortex . Brain Res . 1975;83:1-14.Crossref 10. Moore RY, Bjorklund A, Stenevi U. Plastic changes in the adrenergic innervation of the rat septal area in response to denervation . Brain Res . 1971;33:13-35.Crossref 11. von Monakow C. Gehirpathologie . Vienna, Austria: A Holder; 1905;1:240-248. 12. von Monakow C; Harris G, trans. In: Pribram KH, ed. Brain and Behavior, I: Mood States and Mind . Baltimore, Md: Penguin Books Limited; 1969:27-36. 13. Feeney DM, Gonzalez A, Law WA. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury . Science . 1982; 217:855-857.Crossref 14. Boyeson MG, Krobert KA, Grade CM, Scherer PJ. Unilateral but not bilateral locus ceruleus lesions facilitate recovery from sensorimotor cortex injury . Pharmacol Biochem Behav . 1992;43:771-777.Crossref 15. Boyeson MG, Krobert KA. Cerebellar norepinephrine infusions facilitate recovery after sensorimotor cortex injury . Brain Res Bull . 1992;29:435-439.Crossref 16. Hovda DA, Feeney DM. Amphetamine with experience promotes recovery of locomotor function after unilateral frontal cortex injury in the cat . Brain Res . 1984;298:358-361.Crossref 17. Spear PD. Behavioral and neurophysiological consequences of visual cortex damage . In: Sprague JM, Epstein AN, eds. Progress in Psychobiology and Physiological Psychology . Orlando, Fla: Academic Press Inc; 1977;8:45-83. 18. Munk H. Zur physiologie der grosshirnrinde . Berl Klin Wochenschr . 1877; 14:505-506. 19. Glees P, Cole J. Recovery of skilled motor functions after small repeated lesions of motor cortex in macaque . J Neurophysiol . 1950;13:137-148. 20. Glassman RB. Recovery following sensorimotor cortical damage: evoked potentials, brain stimulation and motor control . Exp Neurol . 1971;33:16-29.Crossref 21. Glassman RB, Malamut BL. Recovery from electroencephalographic slowing and reduced evoked potentials after somatosensory cortical damage in cats . Behav Biol . 1976;17:333-354.Crossref 22. Neafsey EJ, Bold EL, Haas G, et al. The organization of rat motor cortex: a microstimulation mapping study . Brain Res Rev . 1986;11:77-96.Crossref 23. Hall RD, Lindholm EP. Organization of motor and somatosensory neocortex in the albino rat . Brain Res . 1974;66:23-28.Crossref 24. Boyeson MG, Feeney DM, Dail WG. Cortical microstimulation thresholds adjacent to a sensorimotor cortex injury . J Neurotrauma . 1991;8:205-217.Crossref 25. Jenkins WM, Merzenich MM, Recanzone G. Neocortical representational dynamics in adult primates: implications for neuropsychology . Neuropsychologia . 1990;28:573-584.Crossref 26. Wong MCW, Haley EC Jr. Calcium antagonists: stroke therapy coming of age . Stroke . 1990;21:494-501.Crossref 27. Hewlitt K, Corbett D. Combined treatment with MK-801 and nicardipine reduces global ischemic damage in the gerbil . Stroke . 1992;23:82-86.Crossref 28. Rod MR, Auer RN. Combination therapy with nimodipine and dizocilpine in a rat model of transient forebrain ischemia . Stroke . 1992;23:725-732.Crossref 29. Andersen AB, Finger S, Andersen CS, Hoagland N. Sensorimotor cortical lesion effects and treatment with nimodipine . Physiol Behav . 1990;47:1045-1052.Crossref 30. Triggle DJ. Calcium antagonists . Stroke . 1990;21:IV49-IV58. 31. Gustafson I, Westerberg E, Wieloch T. Protection against ischemia-induced neuronal damage by the α-2 adrenoceptor antagonist idazoxan: influence of time of administration and possible mechanisms of action . J Cereb Blood Flow Metab . 1990;10:885-894.Crossref 32. Gustafson I, Westerberg E, Weiloch T. Extracellular brain cortical levels of noradrenaline in ischemia: effects of desipramine and postischemic administration of idazoxan . Exp Brain Res . 1991;86:555-561.Crossref 33. Hayes RL, Jenkins LW, Lyeth BG. Neurotransmitter-mediated mechanisms of traumatic brain injury: acetylcholine and excitatory amino acids . J Neurotrauma . 1992;9:173-187.Crossref 34. Sachs E Jr. Acetylcholine and serotonin in the spinal fluid . J Neurosurg . 1957; 14:22-27.Crossref 35. Saija A, Robinson SE, Lyeth BG, et al. The effects of scopolamine and traumatic brain injury on central cholinergic neurons . J Neurotrauma . 1988;5: 161-170.Crossref 36. Lyeth BG, Dixon CR, Jenkins LW, et al. Effects of scopolamine treatment on long-term behavioral deficits following concussive brain injury to the rat . Brain Res . 1988;452:39-48.Crossref 37. Robinson SE, Fox SD, Posner MG, et al. The effect of M1 muscarinic blockade on behavior following traumatic brain injury in the rat . Brain Res . 1990:511: 141-148.Crossref 38. Lyeth BG, Ray M, Hamm RJ, et al. Post-injury scopolamine administration in experimental traumatic brain injury . Brain Res . 1992;569:281-286.Crossref 39. Sims JS, Jones TA, Fulton RL, Shapiro LE, Lindner MD, Schallert T. Benzodiazepine effects on recovery of function linked to trans-neuronal morphological events . Soc Neurosci . 1990:16:342. Abstract. 40. Schallert T, Hernandez TD, Barth TM. Recovery of function after brain damage: severe and chronic disruption by diazepam . Brain Res . 1986;379:104-111.Crossref 41. Hernandez TD, Jones GH, Schallert T. Co-administration of Ro 15-1788 prevents diazepam-induced retardation of recovery of function . Brain Res . 1989; 487:89-95.Crossref 42. Schallert T, Jones TA, Lindner MD. Multilevel transneuronal degeneration after brain damage . Stroke . 1990;21:143-146. 43. Brailowsky S, Knight RT, Blood K, Scabini D. Gamma-aminobutyric acid-induced potentiation of cortical hemiplegia . Brain Res . 1986;362:322-330.Crossref 44. Brailowsky S, Knight RT, Efron R. Phenytoin increases the severity of cortical hemiplegia in rats . Brain Res . 1986;376:71-77.Crossref 45. Boyeson MG. Neurotransmitter aspects of traumatic brain injury . In: Bach-y-Rita P, ed. Traumatic Brain Injury . New York, NY: Demos Publications; 1989:97-104. 46. Feeney DM, Sutton RL, Boyeson MG, Hovda DA, Dail WG. The locus coeruleus and cerebral metabolism: recovery of function after cortical injury . Physiol Psychol . 1985;13:197-203.Crossref 47. Boyeson MG, Feeney DM. Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury . Pharmacol Biochem Behav . 1990;35:497-501.Crossref 48. Feeney DM, Westerberg VS. Norepinephrine and brain damage: alpha noradrenergic pharmacology alters functional recovery after cortical trauma . Can J Psych . 1990;44:233-252.Crossref 49. Goldstein LB, MacMillan V. Acute unilateral sensorimotor cortex injury in rats blocks D-amphetamine-induced norepinephrine release in cerebellum . Soc Neurosci . 1991:17:1575. Abstract. 50. Sutton RL, Feeney DM. Alpha-adrenergic agonists and antagonists affect recovery and maintenance of beam-walking ability after sensorimotor cortex ablation in the rat . Restor Neurol Neurosci . 1992;4:1-11. 51. Boyeson MG, Callister T, Cavazos J. Biochemical and behavioral effects of a sensorimotor cortex injury in rats pretreated with the neurotoxin DSP-4 . Behav Neurosci . 1992;106:964-973.Crossref 52. Hovda DA, Feeney DM, Salo AA, Boyeson MG. Phenoxybenzamine but not haloperidol reinstates all motor and sensory deficits in cats fully recovered from sensori-motor cortex ablations . Soc Neurosci . 1983;9:1001. Abstract. 53. Stephens J, Goldberg G, Demopoulos JT. Clonidine reinstates deficits following recovery from sensorimotor cortex lesion in rats . Arch Phys Med Rehabil . 1986;67:666-667. 54. Goldstein LB, Coviello A, Miller GD, Davis JN. Norepinephrine depletion impairs motor recovery following sensorimotor cortex injury in the rat . Restor Neurol Neurosci . 1991;3:41-47. 55. Goldstein LB, Davis JN. Clonidine impairs recovery of beam walking after a sensorimotor cortex lesion in the rat . Brain Res . 1990;508:305-309.Crossref 56. Loughlin SE, Foote SL, Fallon JH. Locus coeruleus projections to cortex: topography, morphology and collateralization . Brain Res Bull . 1982;9:287-294.Crossref 57. Loughlin SE, Foote SL, Grzanna R. Efferent projections of nucleus locus coeruleus: morphologic subpopulations have different efferent targets . Neuroscience . 1986;18:307-319.Crossref 58. Crowley JN, Maas JW, Roth RH. Biochemical evidence for simultaneous activation of multiple locus coeruleus efferents . Life Sci . 1980;26:1373-1378.Crossref 59. Ross RA, Joh TH, Reis DJ. Reversible changes in the accumulation and activities of tyrosine hydroxylase and dopamine-beta-hydroxylase in neurons of nucleus locus coeruleus during the retrograde reaction . Brain Res . 1975;92:57-72.Crossref 60. Pickel VM, Krebs H, Bloom FE. Proliferation of norepinephrine-containing axons in rat cerebellar cortex after peduncle lesions . Brain Res . 1973;59:169-179.Crossref 61. Boyeson MG, Scherer PJ, Grade CM, Krobert KA. Unilateral locus ceruleus lesions facilitate motor recovery from cortical injury through supersensitivity mechanisms . Pharmacol Biochem Behav . 1993;44:297-305.Crossref 62. Boyeson MG, Bach-y-Rita P. Determinants of brain plasticity . J Neurol Rehab . 1989;3:35-57. 63. Devor M, Schneider GE. Neuroanatomical plasticity: the principle of conservation of total axonal arborization . In: Vital-Durand F, Jeannerod J, eds. Aspects of Neural Plasticity/Plasticite Nerveuse . Lyon, France: Colloque IN-SERM; 1975;43:191-202. 64. Hoffer BJ, Siggins GR, Oliver AP, Bloom FE. Activation of the pathway from locus coeruleus to rat Purkinje neurons: pharmacological evidence of noradrenergic central inhibition . J Pharmacol Exp Ther . 1973;184:553-569. 65. Brooks VB. The Neural Basis of Motor Control . New York, NY: Oxford University Press Inc; 1986. 66. Ito M. The Cerebellum and Neural Control . New York, NY: Raven Press; 1984. 67. Boyeson MG, Krobert KA, Scherer PJ, Grade CM. Reinstatement of motor deficits in brain-injured animals: the role of cerebellar norepinephrine . Restor Neurol Neurosci . 1993;5:283-290. 68. Boyeson MG, Feeney DM. Adverse effects of catecholaminergic drugs following unilateral cerebellar ablations . Restor Neurol Neurosci . 1991;3:227-233. 69. Gilman AG, Goodman LS, Rail TW, Muraad F. Pharmacol Basis Ther . 1985; 7:171. 70. Crosby EC, Schneider RC, De Jonge BR, Szonyi P. The alterations of tonus and movements through the interplay between the cerebral hemispheres and the cerebellum . J Comp Neurol . 1966;127:1-91.Crossref 71. Boyeson MG, Krobert KA, Grade CM. Cortical norepinephrine depletion protects animals from hemiparesis induced by sensorimotor cortex injury . Soc Neurosci . 1987;13:1665. Abstract. 72. Kennedy PR. Corticospinal, rubrospinal and rubro-olivary projections: a unifying hypothesis . Trends Neurosci . 1990;12:474-479.Crossref 73. Massion J. Red nucleus: past and future . Behav Brain Res . 1988;28:1-8.Crossref 74. Lawrence DG, Kuypers HGJM. The functional organization of the motor system in the monkey, II: the effects of lesions of the descending brain stem pathways . Brain . 1968;91:15-36.Crossref 75. Kennedy PR, Humphrey DR. The compensatory role of the parvocellular division of the red nucleus in operantly conditioned rats . Neurosci Res . 1987; 5:39-62.Crossref 76. Crisostomo EA, Duncan PW, Propst M, Dawson DV, Davis JN. Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients . Ann Neurol . 1988;23:94-97.Crossref 77. Homan R, Panksepp J, McSeweeny J, et al. d-Amphetamine effects on language and motor behaviors in a chronic stroke patient . Soc Neurosci . 1990; 16:439. Abstract. 78. Walker-Batson D, Unwin H, Curtis S, et al. Use of amphetamine in the treatment of aphasia . Restor Neurol Neurosci . 1992;4:47-50. 79. Walker-Batson D, Devous MD, Curtis SS, Unwin DH, Greenlee RG. Response to amphetamine to facilitate recovery from aphasia subsequent to stroke . In: Prescott TE, ed. Clinical Aphasiology . Austin, Tex: Pro-ed; 1991:20. 80. Seliger GM, Abrams GM, Horton A. Irish brogue after stroke . Stroke . 1992; 23:1655-1666.Crossref 81. Ojemann GA, Whitaker HA. The bilingual brain . Arch Neurol . 1978;35:409-412.Crossref 82. Demeurisse G, Verhas M, Capon A. Remote dysfunction in aphasic stroke patients . Stroke . 1991;22:1015-1020.Crossref 83. Robinson RG, Price TR. Post-stroke depressive disorders: a follow-up study of 103 patients . Stroke . 1982;13:635-641.Crossref 84. Finklestein SP, Weintraub RJ, Karmouz N, et al. Antidepressant drug treatment for post-stroke depression: retrospective study . Arch Phys Med Rehabil . 1987;68:772-776. 85. Lipsey JR, Robinson RG, Pearlson GD, et al. Nortriptyline treatment of post-stroke depression: a double-blind study . Lancet . 1984;1:297-300.Crossref 86. Reding MJ, Orto LA, Winter SW, et al. Antidepressant therapy after stroke: a double-blind trial . Arch Neurol . 1986;43:763-765.Crossref 87. Boyeson MG, Harmon RL. Effects of trazodone and desipramine on motor recovery in brain-injured rats . Am J Phys Med Rehabil . 1993;72:286-293.Crossref 88. Boyeson MG, Harmon RL. Effects of trazodone and desipramine on motor recovery in brain-injured rats . Arch Phys Med Rehabil . 1992;73:994. Abstract. 89. Osterholm JL, Bell J, Meyer R. Experimental effects of free serotonin on the brain and its relationship to brain injury . J Neurosurg . 1969;31:408-421.Crossref 90. Salzman SK, Puniak MA, Liu Z, Maitland-Heriot RP, Freeman GM, Agresta CA. The serotonin antagonist mianserin improves functional recovery following experimental spinal trauma . Ann Neurol . 1991;30:533-541.Crossref 91. Weintraub Ml. Methysergide (Sansert) treatment in acute stroke: community pilot study . Angiology . 1985;36:137.Crossref 92. Costa JL, Ito U, Spatz M, Klatzo I, Demiriian C. 5-Hydroxytryptamine accumulation in cerebrovascular injury . Nature . 1974:248:135.Crossref 93. Nakayama H, Ginsberg MD, Deitrich WD. S-emopamil, a novel calcium channel blocker and serotonin S2 antagonist, markedly reduces infarct size following middle cerebral artery occlusion in the rat . Neurology . 1988;38:1667-1673.Crossref 94. Boyeson MG, Harmon RL, Jones JL. Differential effects of fluoxetine, amitriptyline, and serotonin on functional motor recovery after sensorimotor cortex injury. Am J Phys Med Rehabil. In press. 95. Goldstein LB, Matchar DB, Morgenlander JC, Davis JN. Influence of drugs on the recovery of sensory-motor function after stroke . J Neurol Rehabil . 1990; 4:137-144. 96. Porch B, Wyckes J, Feeney DM. Haloperidol, thiazides and some antihypertensives slow recovery from aphasia . Soc Neurosci . 1985;11:52. Abstract. 97. Feeney DM, Baron JC. Diaschisis . Stroke . 1986;17:817-830.Crossref 98. Baron JC, Bousser MG, Comar D, Castaigne P. 'Crossed cerebellar diaschisis' in human supratentorial brain infarction . Trans Am Neurol Assoc . 1980;8: 120-135. 99. Di Peiro V, Chollet F, Dolan RJ, Thomas DJ, Frackowiak R. The functional nature of diaschisis . Stroke . 1990;21:1365-1369.Crossref 100. Rousseaux M, Steinling M. Crossed hemispheric diaschisis in unilateral cerebellar lesions . Stroke . 1992;23:511-514.Crossref 101. Yu J, Eidelberg E. Recovery of locomotor function in cats after localized cerebellar lesions . Brain Res . 1983;273:121-131.Crossref 102. Sanford PR, Spengler SE, Sawasky KB. Clonidine in the treatment of brain-stem spasticity: case report . Am J Phys Med Rehabil . 1992;71:301-303.Crossref 103. Fox R, Lehmkuhle SW, Bush RC. Stereopsis in the falcon . Science . 1977; 197:79-81.Crossref 104. Seyffarth H, Denny-Brown D. The grasp reflex and instinctive grasp reaction . Brain . 1948;73:109-183.Crossref 105. Marotta RF, Logan N, Potegal M, Glusman M, Gardner EL. Dopamine agonists induce recovery from surgically-induced septal rage . Nature . 1977;269:513-515.Crossref 106. Feeney DM, Hovda DA. Reinstatement of binocular depth perception by amphetamine and visual experience after visual cortex ablation . Brain Res . 1985; 342:352-356.Crossref 107. Kasamatsu T, Pettigrew JD, Ary M. Cortical recovery from effects of monocular deprivation: acceleration with norepinephrine and suppression with 6-hydroxydopamine . J Neurophysiol . 1981;45:254-266. 108. Hovda DA, Feeney DM. Haloperidol blocks amphetamine-induced recovery of binocular depth perception after bilateral visual cortex ablation in the cat . Proc West Pharmacol Soc . 1985;28:209-211. 109. Donaldson IML, Hawthorne ME. Coding of visual information by units of the cat cerebellar vermis . Exp Brain Res . 1979;34:27-48.Crossref 110. Frisby JP. An old illusion and a new theory of stereoscopic depth perception . Nature . 1984;307:592-593.Crossref 111. Stenton SP, Frisby JP, Mayhew JEW. Vertical disparity pooling and the induced effect . Nature . 1984;309:622-623.Crossref

Journal

Archives of NeurologyAmerican Medical Association

Published: Apr 1, 1994

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month