Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Selective Cooling of the Eye: Effects on Evoked Potentials of the Visual System

Selective Cooling of the Eye: Effects on Evoked Potentials of the Visual System Abstract The time relationships between the component waves of the electroretinogram, evoked potentials of the optic chiasm, and visual cortex were investigated. Selective cooling of the eye by intraocular perfusion while maintaining normothermic body and brain temperatures was performed on a series of cats. Under these conditions, the amplitude of the ERG waves was reduced and the latencies increased, while little effect on the more central evoked potentials was noted. When the eye temperature was reduced below 27 C, the evoked potentials of both the optic chiasm and the visual cortex clearly preceded the onset of the b-wave of the ERG. This further supports the contention that the b-wave represents an elaborative or adaptive process within the retina and does not represent the most direct transmission of visual information from the photoreceptors to the brain stem and visual cortex. References 1. Massopust, L.C., Jr., et al: Evoked Responses From the Eye and Visual Pathways in the Hypothermic Cat , Exp Neurol 10:383-392, 1964.Crossref 2. Massopust, L.C., Jr.; Wolin, L.R.; and Meder, J.: Spontaneous Electrical Activity of the Brain in Hibernators and Nonhibernators During Hypothermia , Exp Neurol 12:25-32, 1965. 3. Massopust, L.C., Jr., and Wolin, L.R.: Evoked Potentials From the Visual System in Hypothermic Hibernators and Nonhibernators , Exp Neurol 14: 134-143, 1966. 4. Wolin, L.R.; Massopust, L.C., Jr.,; and Meder, J.: Electroretinogram and Cortical Evoked Potentials Under Hypothermia , Arch Ophthal 72:521-524, 1964. 5. Böck, J.; Bornschein, H.; and Hommer, K.: Der Einfluss der Umgebungstemperatur auf die Retinale Uberlebenszeit Enukleierter Bulbi , Vision Res 4:609-625, 1964. 6. Nikiforowsky, P.M.: Über den Verlauf der Photoelektrischen Reaktion des Froschauges bei Abkühlung Z Biol 57:397-412, 1912. 7. Armington, J.C.: Vision , Ann Rev Physiol 27: 163-182, 1965. 8. Brown, K.T., and Watanabe, K.: Isolation and Identification of a Receptor Potential From the Pure Cone Fovea of the Monkey Retina , Nature 193:958-960, 1962. 9. Brown, K.T., and Wiesel, T.N.: Localization of Origins of Electroretinogram Components by Intraretinal Recording on the Intact Cat Eye , J Physiol 158:257-280, 1961. 10. Tomita, T., and Torihama, Y.: Further Study on the Intraretinal Action Potentials and on the Site of ERG Generation , Jap J Physiol 6:118-136, 1956. 11. Bair, H.L., and Martens, T.G.: Refraction and Visual Physiology , Arch Ophthal 68:107-138, 1962. 12. Jacobson, J.H.: Current Status of Clinical Electroretinography , Survey Ophthal 5:539-549, 1960. 13. Lindsley, D., in discussion of L. Riggs; The Human Electroretinogram , Arch Ophthal 60:753, 1958. 14. Ponte, F., and Monaco, P.: A Study on the Relationship Between Electroretinogram and Optic Nerve Discharge , Ophthalmologica 147:57-66, 1964. 15. Potts, A., in discussion of L. Riggs; The Human Electroretinogram , Arch Ophthal 60:753, 1958. 16. Ames, A., III, and Gurian, B.S.: Effects of Glucose and Oxygen Deprivation on Function of Isolated Mammalian Retina , J Neurophysiol 26: 617-634, 1963. 17. Hamasaki, D.I.: The Electroretinogram After Application of Various Substances to the Isolated Retina , J Physiol 173:449-458, 1964. 18. Fujino, T., and Hamasaki, D.I.: The Effect of Occluding the Retinal and Choroidal Circulations on the Electroretinogram of Monkeys , J Physiol 180:837-845, 1965. 19. Potts, A.M.; Modrell, R.W.; and Kingsbury, C.: Permanent Fractionation of the Electroretinogram by Sodium Glutamate , Amer J Ophthal 50: 230-237, 1960. 20. Massopust, L.C., Jr.; Wolin, L.R.; and Barnes, H.W.: The Effect of Hypoxia on Electrical Activity of the Visual System in Cats , Jap J Physiol 16: 451-460, 1966. 21. Motokawa, K., and Ogawa, T.: The Electrical Field in the Retina and Pattern Vision , Tohoku J Exp Med 78:209-221, 1962.Crossref 22. Gorman, J.J.; Cogan, D.G.; and Gellis, S.S.: An Apparatus for Grading the Visual Acuity of Infants on the Basis of Opticokinetic Nystagmus , Pediatrics 19:1088-1092, 1957. 23. Zetterström, B.: The Clinical Electroretinogram: IV. The Electroretinogram in Children During the First Year of Life , Acta Ophthal 29:295-304, 1951.Crossref 24. Zetterström, B.: Flicker-Electroretinography in New-Born Infants , Acta Ophthal 33:157-166, 1955.Crossref 25. Horsten, G.P.M., and Winkelman, J.E.: Electrical Activity of the Retina in Relation to Histological Differentiation in Infants Born Prematurely and at Full-Term , Vision Res 2:269-276, 1962.Crossref 26. Ordy, J.M.; Massopust, L.C., Jr.; and Wolin, L.R.: Postnatal Development of the Retina, Electroretinogram, and Acuity in the Rhesus Monkey , Exp Neurol 5:364-382, 1962.Crossref http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Ophthalmology American Medical Association

Selective Cooling of the Eye: Effects on Evoked Potentials of the Visual System

Archives of Ophthalmology , Volume 76 (5) – Nov 1, 1966

Loading next page...
 
/lp/american-medical-association/selective-cooling-of-the-eye-effects-on-evoked-potentials-of-the-GvNtFZS0Ou
Publisher
American Medical Association
Copyright
Copyright © 1966 American Medical Association. All Rights Reserved.
ISSN
0003-9950
eISSN
1538-3687
DOI
10.1001/archopht.1966.03850010725020
Publisher site
See Article on Publisher Site

Abstract

Abstract The time relationships between the component waves of the electroretinogram, evoked potentials of the optic chiasm, and visual cortex were investigated. Selective cooling of the eye by intraocular perfusion while maintaining normothermic body and brain temperatures was performed on a series of cats. Under these conditions, the amplitude of the ERG waves was reduced and the latencies increased, while little effect on the more central evoked potentials was noted. When the eye temperature was reduced below 27 C, the evoked potentials of both the optic chiasm and the visual cortex clearly preceded the onset of the b-wave of the ERG. This further supports the contention that the b-wave represents an elaborative or adaptive process within the retina and does not represent the most direct transmission of visual information from the photoreceptors to the brain stem and visual cortex. References 1. Massopust, L.C., Jr., et al: Evoked Responses From the Eye and Visual Pathways in the Hypothermic Cat , Exp Neurol 10:383-392, 1964.Crossref 2. Massopust, L.C., Jr.; Wolin, L.R.; and Meder, J.: Spontaneous Electrical Activity of the Brain in Hibernators and Nonhibernators During Hypothermia , Exp Neurol 12:25-32, 1965. 3. Massopust, L.C., Jr., and Wolin, L.R.: Evoked Potentials From the Visual System in Hypothermic Hibernators and Nonhibernators , Exp Neurol 14: 134-143, 1966. 4. Wolin, L.R.; Massopust, L.C., Jr.,; and Meder, J.: Electroretinogram and Cortical Evoked Potentials Under Hypothermia , Arch Ophthal 72:521-524, 1964. 5. Böck, J.; Bornschein, H.; and Hommer, K.: Der Einfluss der Umgebungstemperatur auf die Retinale Uberlebenszeit Enukleierter Bulbi , Vision Res 4:609-625, 1964. 6. Nikiforowsky, P.M.: Über den Verlauf der Photoelektrischen Reaktion des Froschauges bei Abkühlung Z Biol 57:397-412, 1912. 7. Armington, J.C.: Vision , Ann Rev Physiol 27: 163-182, 1965. 8. Brown, K.T., and Watanabe, K.: Isolation and Identification of a Receptor Potential From the Pure Cone Fovea of the Monkey Retina , Nature 193:958-960, 1962. 9. Brown, K.T., and Wiesel, T.N.: Localization of Origins of Electroretinogram Components by Intraretinal Recording on the Intact Cat Eye , J Physiol 158:257-280, 1961. 10. Tomita, T., and Torihama, Y.: Further Study on the Intraretinal Action Potentials and on the Site of ERG Generation , Jap J Physiol 6:118-136, 1956. 11. Bair, H.L., and Martens, T.G.: Refraction and Visual Physiology , Arch Ophthal 68:107-138, 1962. 12. Jacobson, J.H.: Current Status of Clinical Electroretinography , Survey Ophthal 5:539-549, 1960. 13. Lindsley, D., in discussion of L. Riggs; The Human Electroretinogram , Arch Ophthal 60:753, 1958. 14. Ponte, F., and Monaco, P.: A Study on the Relationship Between Electroretinogram and Optic Nerve Discharge , Ophthalmologica 147:57-66, 1964. 15. Potts, A., in discussion of L. Riggs; The Human Electroretinogram , Arch Ophthal 60:753, 1958. 16. Ames, A., III, and Gurian, B.S.: Effects of Glucose and Oxygen Deprivation on Function of Isolated Mammalian Retina , J Neurophysiol 26: 617-634, 1963. 17. Hamasaki, D.I.: The Electroretinogram After Application of Various Substances to the Isolated Retina , J Physiol 173:449-458, 1964. 18. Fujino, T., and Hamasaki, D.I.: The Effect of Occluding the Retinal and Choroidal Circulations on the Electroretinogram of Monkeys , J Physiol 180:837-845, 1965. 19. Potts, A.M.; Modrell, R.W.; and Kingsbury, C.: Permanent Fractionation of the Electroretinogram by Sodium Glutamate , Amer J Ophthal 50: 230-237, 1960. 20. Massopust, L.C., Jr.; Wolin, L.R.; and Barnes, H.W.: The Effect of Hypoxia on Electrical Activity of the Visual System in Cats , Jap J Physiol 16: 451-460, 1966. 21. Motokawa, K., and Ogawa, T.: The Electrical Field in the Retina and Pattern Vision , Tohoku J Exp Med 78:209-221, 1962.Crossref 22. Gorman, J.J.; Cogan, D.G.; and Gellis, S.S.: An Apparatus for Grading the Visual Acuity of Infants on the Basis of Opticokinetic Nystagmus , Pediatrics 19:1088-1092, 1957. 23. Zetterström, B.: The Clinical Electroretinogram: IV. The Electroretinogram in Children During the First Year of Life , Acta Ophthal 29:295-304, 1951.Crossref 24. Zetterström, B.: Flicker-Electroretinography in New-Born Infants , Acta Ophthal 33:157-166, 1955.Crossref 25. Horsten, G.P.M., and Winkelman, J.E.: Electrical Activity of the Retina in Relation to Histological Differentiation in Infants Born Prematurely and at Full-Term , Vision Res 2:269-276, 1962.Crossref 26. Ordy, J.M.; Massopust, L.C., Jr.; and Wolin, L.R.: Postnatal Development of the Retina, Electroretinogram, and Acuity in the Rhesus Monkey , Exp Neurol 5:364-382, 1962.Crossref

Journal

Archives of OphthalmologyAmerican Medical Association

Published: Nov 1, 1966

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month