Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Reduced Glial Cell Density and Neuronal Size in the Anterior Cingulate Cortex in Major Depressive Disorder

Reduced Glial Cell Density and Neuronal Size in the Anterior Cingulate Cortex in Major Depressive... BackgroundGlial cells are more numerous than neurons in the cortex and are crucial to neuronal function. There is evidence for reduced neuronal size in schizophrenia, with suggestive evidence for reduced glial cell density in mood disorders. In this investigation, we have simultaneously assessed glial cell density and neuronal density and size in the anterior cingulate cortex in schizophrenia, major depressive disorder, and bipolar disorder.MethodsWe examined tissue from area 24b of the supracallosal anterior cingulate cortex in 60 postmortem brain specimens from 4 groups of 15 subjects, as follows: major depressive disorder, schizophrenia, bipolar disorder, and normal controls. Glial cell density and neuronal size and density were examined in all subjects using the nucleator and the optical disector.ResultsGlial cell density (22%) (P= .004) and neuronal size (23%) (P= .01) were reduced in layer 6 in major depressive disorder compared with controls. There was some evidence for reduced glial density in layer 6 (20%) (P= .02) in schizophrenia compared with controls, before adjusting for multiple layerwise comparisons, but there were no significant changes in neuronal size. There was no evidence for differences in glial density or neuronal size in bipolar disorder compared with controls. Neuronal density was similar in all groups to that found in controls.ConclusionThese findings suggest that there is reduced frontal cortical glial cell density and neuronal size in major depressive disorder.THERE ARE 3 main types of glial cell populations in the central nervous system and together they constitute well over half of all cells in the brain. Until recently, they have been largely viewed as "passive handmaidens" to neurons, and their central role in cortical and neuronal function has not been fully appreciated.They have important roles in synaptic function,clearance of extracellular ionsand transmitters,neuronal metabolism,and neuronal migration.There is also some evidence that cortical glial cell numbers may be increased by neuroleptic medication in primates,that glial cell density is reduced in the prefrontal cortex,and that the subgenual anterior cingulate cortex (ACC)is reduced in major depressive disorder (MDD) and the orbitofrontalcortex in schizophrenia. These findings suggest that glial cell dysfunction may be involved in the pathophysiology of major psychiatric disorders.Macroscopic investigations of schizophrenia, bipolar disorder (BPD), and MDD show many similarities in brain pathology, with the differences being quantitative rather than qualitative. For example, ventricular dilatation and reduced hippocampal and cortical volumes are seen in schizophrenia,but also to a less marked degree in MDD and BPD.These investigations also indicate which cortical regions are predominantly affected in MDD and schizophrenia.In MDD, there is reduced metabolism in the ACCon the left side.Abnormalities of the prefrontal cortex are also described in schizophrenia,and while the ACC is again implicated,the changes are neither so marked nor so lateralized as in MDD. The presence of these ACC abnormalities in MDD and schizophrenia are consistent with the known functions of this cortical region in information processing, attention, and in the expression and modulation of emotion.As these functions are altered in schizophreniaand MDD,this area is a candidate region in which to search for the presence of distinct microscopic neuroanatomical substrates for these disorders.Microscopically, investigations of schizophrenia point to abnormalities of neuronal cytoarchitecture and neuropil,with evidence for reduced neuronal size.Whether such changes are also present in MDD and BPD is not yet clear, for there have been few investigations. In MDD, reduced glial density has been described,but this has not been a consistent finding in schizophrenia.It has been proposed that reduced glial cell density may be specific to MDD and BPD,and alternatively, that if reduced glial cell density is a feature of schizophrenia, then it exhibits a region-specific distribution.In this study, we set out to characterize neuronal and glial cell density and neuronal size in the ACC in normal human brain, schizophrenia, BPD, and MDD.SUBJECTS AND METHODSSUBJECTSHuman brain specimens from Brodmann area 24 were obtained from the Stanley Foundation Brain Consortium.The sample consisted of 60 subjects (15 normal controls, 15 subjects with schizophrenia, 15 with BPD, and 15 with MDD) and is the same as that used previously to investigate subgenual ACC.Diagnoses were made according to DSM-IVcriteria. Detailed case summaries were provided on demographic, clinical, and histological information (see Table 1for group summary details). All brains underwent clinical neuropathological examination and none demonstrated evidence of neurodegenerative changes or other pathological lesions. Messenger RNA levels of the housekeeping gene glyceraldehyde phosphate dehydrogenasewere measured in the Stanley Foundation Brain Consortium laboratory by the reverse transcription polymerase chain reaction and they were excellent to good in all groups, demonstrating good tissue preservation.Table 1. Group Summaries of Demographic, Clinical, and Histological Information on the Brains Donated by the Stanley Foundation*Variable‡Group†ControlsSczBPDMDDDemographicsSample size15151515Age at death in years, mean ± SD48.1 ± 10.744.5 ± 13.142.3 ± 11.746.5 ± 9.3HistologicalPostmortem interval in hours, mean ± SD23.7 ± 9.9433.7 ± 14.632.5 ± 16.127.5 ± 10.7Brain hemisphereRight7686Left8979pH, mean ± SD6.27 ± 0.246.16 ± 0.266.18 ± 0.246.20 ± 0.23Cause of deathCPD13737Traffic accident2001Suicide0794Alcohol intoxication0101Pneumonia0011Subdural hematoma0010Malnutrition0010Drowning0001ClinicalDuration of disorder in years, mean ± SD0 ± 021.3 ± 11.420.1 ± 9.712.7 ± 11.1Fluphenazine milligram equivalents§Minimum0000Median035 00075000Maximum0200 00060 0000Past alcohol/drug abuse or dependenceNo13121214Yes2331Current alcohol/drug abuse or dependenceNo15121112Yes0343Treated with antidepressants at deathNo151096Yes0569Lithium treatment at deathNo1512513Yes0242Other mood stabilizer0160Family history of disorder&par;None151083Scz0310BPD0031MDD0238Unknown0013Death by suicideNo151168Yes0497*Scz indicates schizophrenia; BPD, bipolar disorder; MDD, major depressive disorder; and CPD, cardiopulmonary disease.†There were 9 males and 6 females in each group.‡Italics indicate that the variable is a potential predictor of cell density and neuronal size in the analysis.§Fluphenazine milligram equivalents is an estimate of the lifetime neuroleptic dose in fluphenazine equivalent dose in milligrams.&par;Family history was defined as a positive for Scz, BPD, or MDD if 1 or more first-degree relatives had a diagnosis of that same disorder, negative if there was no history, and unknown if insufficient information was available. One subject with BPD had a family history of BPD and MDD.Tissue was available from only 1 hemisphere of each brain, with roughly equal numbers sampled in a random manner from each side of the brain (Table 1). Hemispheres were fixed in 10% phosphate-buffered formalin and then cut in coronal sections of roughly 1-cm thickness. From these slices, a block was taken from the supracallosal ACC approximately 2-cm caudal to the tip of the genu of the corpus callosum and processed to paraffin wax. From these blocks, a series of 20 sections of 30-µm thickness were taken and 5 sections were systematically randomly sampled for analysis. All sections were then stained with cresyl violet according to standard methods.IDENTIFICATION OF CORTICAL LAMINAFor each case, Brodmann area 24b of the ACC was identified and selected for analysis according to macroscopic and microscopic criteria.This region has clear laminar boundaries, making it a particularly suitable region for the delineation of laminar specific variations in cortical cytoarchitecture.Layer 5 is relatively easily divided into distinct sublayers (layers 5a and 5b), which we assessed separately, in addition to the remaining 4 layers. The width of each cortical layer was assessed using an image analysis system (Image-Pro Plus; Media Cybernetics, Baltimore, Md),with which we obtained a series of contiguous images (20 × 25 images) at 20-times objective magnification, from which a single composite image was formed. The laminar boundaries were identified on this image and the mean laminar width was calculated. The percentage of total cortical width contributed by each layer in each group was then calculated (Table 2).Table 2. Observed Median Neuronal Sizes in Square Micrometers and Cortical Height (Expressed as Percentage of Total Cortical Thickness) Within Categories Defined by Cortical Layer and Patient Group (n = 15 per Group)*GroupLayer†1235a5b6Neuronal sizeControl106 (64, 166)263 (129, 529)493 (203, 952)737 (310, 1635)804 (337, 1778)741 (358, 1386)Scz103 (66, 170)276 (148, 525)547 (243, 1024)684 (274, 1443)756 (302, 1679)649 (311, 1223)BPD109 (65, 177)286 (141, 547)505 (216, 993)687 (293, 1480)686 (309, 1510)602 (285, 1202)MDD92 (58, 152)289 (158, 538)494 (199, 900)710 (256, 1556)676 (286, 1471)596 (279, 1092)Cortical heightControl10.8 (9.2, 11.9)10.3 (9.1, 12.0)25.2 (23.6, 26.2)11.8 (10.8, 12.9)14.7 (12.7, 16.7)26.7 (23.3, 28.5)Scz10.0 (7.3, 12.3)9.6 (8.2, 11.1)26.2 (21.7, 27.3)12.1 (11.2, 13.2)13.4 (13.1, 14.8)27.7 (23.2, 35.2)BPD10.9 (7.9, 12.0)10.4 (8.3, 11.3)25.5 (21.8, 27.0)11.3 (10.9, 12.0)14.0 (13.3, 15.4)27.3 (23.6, 35.0)MDD11.3 (9.7, 11.8)10.0 (9.0, 12.0)24.9 (23.7, 29.2)11.8 (11.2, 12.8)13.6 (12.8, 14.2)26.2 (24.4, 28.8)*Scz indicates schizophrenia; BPD, bipolar disorder; and MDD, major depressive disorder.†The lower and upper quartiles are included in parentheses.3-DIMENSIONAL CELL COUNTING AND NEURONAL SIZE ESTIMATESIn this investigation, neurons were identified by the presence of a cresyl violet–stained cytoplasm, a single nucleolus, and their generally larger shape and nonspherical outline. Glia were identified by the absence of stained cytoplasm, the presence of a thicker nuclear membrane, and more heterogeneous chromatin within the nucleus.Sections were viewed using a BH2 Olympus microscope (Olympus Optical Co [UK] Ltd, London, England) with a 100-times (numerical aperture, 1.4) oil-immersion objective lens, to which was attached a color video camera (TK1280-E; Microinstruments Ltd, Oxon, England), a z-axis depth gauge (Heidenhain [GB] Ltd, London, England) (accurate to <1 µm), and an Olympus x- and y-axis movement gauge. After the mounting and the staining of tissue sections, the thickness of the tissue sections was assessed. This had reduced from 30 µm to a mean (SD) of 23.4 (2.8) µm. Consequently, using an optical disector with a depth of 15 µm, our guard volumes above and below the disector averaged 4.8 µm. Cell-density estimations were made with the aid of image analysis software (Stereology 2.5; Kinetic Imaging, Liverpool, England) according to the stereological optical disector method.The dimensions of the disector used were 50.5 × 37.5 µm in the x- and the y-axis, respectively. There was 1 disector per field.A systematic random sampling strategy was optimized before the investigation, so that an equal proportion of sampled neurons was obtained from each of the 5 sections used in each case. This involved estimating the number of fields required to give more than 100 sampled neurons per layer (and sublayers, in the case of 5a and 5b) per case, and then calculating the required size of the steps (taken in a sine wave fashion with random start) between fields, so that the entire region of each cortical layer of Brodmann area 24b in the tissue section was sampled. An average of 48 fields were counted per layer per case for neuronal estimations, and 33 fields for glial estimations. A mean (SD) of 103 (3.2) neurons and 85 (15) glia were counted in each layer of each case. Values for the coefficient of error of the neuronal and glial density estimates in the different cortical layers were less than 5% and 6%, respectively. Neuronal and glial cell densities are expressed as cell per mm3/103.The neuronal size of all disector sampled neurons were estimated using the stereological estimator of number-weighted volume: the nucleator.Thus, we calculated the size (expressed in cubic micrometers) of more than 100 neurons from each individual layer of each subject. As glial cytoplasm was unstained, glial cell size was not assessed.STATISTICAL ANALYSISAnalysis of Neuronal and Glial Cell DensitiesThe objective of the statistical analysis was to compare within each cortical layer the neuronal and glial cell densities of the 3 patient groups (schizophrenia, BPD, and MDD) with the control group. Layerwise density data (cell counts and sizes of search area) were obtained by combining the 5 sections and sampled fields per layer. Because of their possibly skewed distributions, the density data are summarized by their medians (Table 3). A number of subject-specific clinical and demographic variables with potential to affect cell densities were recorded (these are listed in Table 1in italics. To compare groups using an adequate model, a forward-selection procedure was employed to identify variables that could be shown empirically to predict densities. Within each layer, groups were then compared using models that adjusted for these variables.Table 3. Observed Median Neuronal and Glial Densities (Cells per Cubic Millimeter/103) Within Categories Defined by Brain Hemisphere, Cortical Layer, and Subject Group (15 per group)*Cell TypeGroupHemisphereGroup†1235a5b6RightLeftRightLeftRightLeftRightLeftRightLeftRightLeftNeuronsControl58.3 (47.5, 67.0)53.0 (47, 59.9)184.8 (169.9, 202.6)199.7 (184.8, 231)92.4 (81.2, 99.4)101.1 (92.1, 109.3)118 (100, 126.2)117.4 (110.5, 127.4)89.2 (71.9, 90.4)85.1 (80.7, 93.6)58.7 (52.3, 63)62.4 (55.1, 64.8)Scz53.6 (47.2, 57.6)51.8 (45.8, 60.6)158.7 (142.2, 193.7)203.3 (188.9, 247.1)93.1 (81.8, 105.6)92.4 (88.1, 97.3)118.7 (109.9, 127.5)123 (113.3, 128.4)85.8 (82.9, 87.8)84.3 (77.2, 90.9)62.1 (53, 80.1)61.2 (51.5, 64.4)BPD49.5 (40.2, 56.2)71.1 (57, 73.5)161.5 (145.9, 199)217.2 (179.8, 228.3)75.5 (73.8, 96.8)106.6 (99.8, 106.6)97.5 (89.5, 112.6)119.2 (113.9, 139.6)79.6 (70.9, 81)102.4 (86.6, 102.4)51.1 (49.3, 53.1)63.6 (61.4, 70.4)MDD50.4 (47.2, 54.7)49.7 (45.3, 66.3)167.5 (144.7, 191.9)179.4 (168, 201.6)87 (83.5, 91)88.9 (75.8, 91.6)116.5 (108.7, 121.9)117.7 (109.1, 119.2)82.5 (77, 86.8)86.3 (83.5, 93.2)56.9 (56.3, 61.1)61.1 (57, 70.5)GliaControl113.9 (86.3, 132.5)144.9 (113.7, 182.3)65.2 (36.9, 79.6)72.4 (59.7, 85.5)73.8 (57.5, 88.9)94.9 (85.1, 113.9)87.4 (67.7, 102.1)104.8 (95.4, 113.2)89.7 (74.5, 112.1)108.4 (99.5, 130)126.5 (98.8, 140.3)169.6 (138, 177.9)Scz123.4 (106.6, 154)126.8 (86.4, 135.8)62.7 (39.1, 77.5)61.5 (46.7, 73.6)79.2 (56.9, 89.7)87.9 (75.7, 97.1)64.3 (46.5, 76)96.3 (77.7, 114.6)88.9 (68.5, 96.9)93.6 (75.2, 115.6)102 (81.1, 129.7)121.2 (103.3, 130.9)BPD122.7 (91.5, 151.5)118.1 (105.7, 120.4)61.9 (52.4, 84.4)71.1 (58.4, 76.5)72.5 (67.4, 88.7)85.7 (81.1, 90.9)83.6 (67, 104.7)99.9 (81.6, 105.3)84.9 (68.7, 109.2)107.3 (99.8, 116.6)132.2 (105.1, 142.2)135.8 (120, 150.7)MDD111.3 (92.4, 147.9)106.6 (71.3, 117.6)72.7 (63.3, 79)61.1 (50.2, 64.7)85.7 (68.6, 92.4)59.8 (53.7, 90.4)77.7 (70, 87)82.5 (67.8, 111.4)81.8 (71.1, 105.6)83.2 (72.1, 111.5)105.4 (99.9, 109.6)100.9 (89.9, 121.1)*Scz indicates schizophrenia; BPD, bipolar disorder; and MDD, major depressive disorder.†Lower and upper quartiles are included in parentheses.In the model selection stage, all layerwise counts were modeled simultaneously, employing a log-link Poisson model that used the size of the search area as an offset. A dispersion parameter was introduced to account for spatial clustering within fields or sections. In addition, a random effect for subject was included to account for layerwise densities of the same subject being more similar than densities from different subjects. The factor layer was always included in the model, since by definition densities vary between cortical layers. In the stepwise-forward procedure, the Pvalue threshold for inclusion of a new variable was chosen to be 10%. The random-effects Poisson models were fitted using the procedure generalized linear mixed model in the statistical package Genstat 5,which employs the Schall methodto fit a generalized linear mixed model.Having identified empirical predictors, a log-link Poisson model, using size of search area as an offset and allowing for overdispersion because of spatial clustering, was fitted to the cell count data in each layer. Density ratios between each of the 3 psychiatric groups and the control group adjusted for the empirical predictors were estimated. Since hemisphere was identified as a predictor of neuronal as well as glial density (see the "Results" section), we allowed for the density ratios to differ between hemispheres. Accumulated analysis of deviance,using the experimental method, was employed to test for differences between the patient groups and the control group. To account for multiple layerwise testing, the Pvalues of the group comparisons can be compared with .05/6 = 0.008 to achieve an experiment-wise type 1 error probability of 5% according to the Bonferroni correction. This Poisson modelling was again carried out in Genstat 5.Analysis of Neuronal SizesThe objective of the statistical analysis was to compare within each cortical layer neuronal sizes of the 3 patient groups with the control group. Size was recorded for each neuron identified, yielding approximately 100 data points per case and layer (from 5 tissue sections with approximately 10 fields per section and layer). Because of their positively skewed distributions, the neuronal size data are summarized by their medians (Table 2) and analyzed on the log-scale, in which empirical distributions were well approximated by normal distributions. We employed robust SEs when fitting our regression models. Such inferences are robust against correlations between repeated observations on the primary sampling units. Here the cases constituted the (independent) primary sampling units. The analysis of the neuronal size data was carried out in analogy to the analyses of the density data. Out of the variables marked with italics in Table 1, empirical predictors were identified using a forward-selection procedure and group comparisons adjusted for these variables. The robust model fitting was carried out in Stata 6.RESULTSANALYSIS OF NEURONAL DENSITIESTwo predictors of neuronal density were identified at the model selection stage: age of the patient at death (Wald test: χ21= 6, P= .01; estimated increase in neuronal density per 10 years' survival, 3.4%; 95% confidence interval [CI], 0.67%-6.3%) and the brain hemisphere from which the sections were taken (Wald test: χ21= 5.5, P= .02; estimated increase in neuronal density for left hemisphere relative to right hemisphere, 7.5%; 95% CI, 1.2%-14.2%).Layerwise comparisons between the 3 patient groups and the control group were adjusted for the effect of age and hemisphere (see Table 3for observed median neuronal densities within categories defined by brain hemisphere, cortical layer, and patient group). There was some evidence that the ratio of neuronal density between the BPD group and the control group depended on the hemisphere of the brain in layer 1 at the single test significance level of 5% (F1,51= 4.31, P= .04). However, this evidence of an interaction disappeared after adjusting for the 6 layerwise comparisons. None of the other comparisons were significant, even at the unadjusted level of 5%.ANALYSIS OF GLIAL CELL DENSITIESTwo predictors of glial density were identified at the model selection stage; the pH of the tissue (Wald test: χ21= 7.6 P= .006; estimated increase in glial density of 4% per 0.1 increase in pH; 95% CI, 1.6%-6.6%) and the brain hemisphere (Wald test: χ21= 5.1, P= .02; estimated increase in glial density for left hemisphere relative to right hemisphere, 14%; 95% CI, 1.8%-27.6%).Layerwise comparisons between the 3 patient groups and the control group were adjusted for the effect of pH and hemisphere (see Table 3for observed median glial densities within categories defined by brain hemisphere, cortical layer, and patient group). Tests for overall differences between patient groups and control group as well as their interactions with hemisphere were carried out (Table 4). Not adjusting for multiple layerwise comparisons, there seemed to be a significant difference between the schizophrenic and the control group and between the depressed patients and the control group in layer 6 (Figure 1). In addition, the ratio of glial density between the depressed group and the control group seemed to depend on the hemisphere of the brain in layers 1 and 3. However, after adjusting for the 6 layerwise comparisons, at the experiment-wise 5% level, the only significant difference was between the depressed group and the control group in layer 6 (F1,51= 8.9, P= .004). In layer 6, the glial density was estimated to be reduced by 22% in depressed patients compared with controls (uncorrected 95% CI, 7%-35%) (Table 4).Table 4. Approximate F Tests and Comparison of Glial Cell Density Between Patient Groups and the Control Group (n = 15 per Group) From Accumulated Analysis of Deviance (Experimental Method), and Single 95% Confidence Intervals (CI) for Glial Cell Density Ratios Between Patient Groups and the Control Group (Adjusted for pH and Hemisphere)*Patient GroupCortical LayerTest for Overall Difference Between Patient Group and Control GroupEstimate of Effect, Estimated Ratio (95% CI)Test for Interaction With HemisphereF1,51PF1,51PScz (n = 15)10.72.400.91 (0.73-1.13)1.78.1920.24.630.95 (0.76-1.19)0.71.4030.15.700.96 (0.80-1.15)0.12.735a3.05.090.83 (0.71-0.99)2.25.145b2.89.100.87 (0.74-1.02)0.04.8465.92.02†0.80 (0.67-0.96)0.27.61BPD (n = 15)10.16.690.95 (0.77-1.18)2.56.1220.56.461.09 (0.88-1.35)0.39.543<0.001>.991.01 (0.85-1.21)1.18.285a0.18.670.97 (0.83-1.13)0.76.395b0.22.640.96 (0.82-1.13)0.01.9261.70.200.89 (0.75-1.06)0.13.72MDD (n = 15)12.91.090.85 (0.69-1.06)5.33.02†2<0.001>.991.02 (0.82-1.26)2.06.1632.64.110.90 (0.75-1.07)5.78.02†5a2.66.110.89 (0.76-1.05)0.35.565b3.90.050.86 (0.73-1.01)0.81.3768.90.004‡0.78 (0.65-0.93)1.58.21*Scz indicates schizophrenia; BPD, bipolar disorder; and MDD, major depressive disorder.†Significant at the single-test significance level of 5%; not adjusted for multiple layerwise comparisons.‡Significant at the experiment-wise significance level of 5% (ie, adjusted for multiple layerwise comparisons).Glia and neurons in layer 6 of the anterior cingulate cortex. Glia are small, dark, and generally round, with no stained cytoplasm. Neurons are larger, have a nucleolus visible within the nucleus and Nissl-stained cytoplasm. C1 to C3, Control subject: male, aged 44 years. B1 to B3, Case with bipolar disorder: female, aged 48 years. S1 to S3, Case with schizophrenia: male, aged 44 years. D1 to D3, Case with major depressive disorder: female, aged 52 years. Fewer glial cells are present in major depressive disorder and schizophrenia. Although not qualitatively obvious, neurons are smaller in major depressive disorder (Nissl stain; bar, 12 µm).ANALYSIS OF NEURONAL SIZEDuring the model selection stage, the age of the patient was identified as a predictor of neuronal size (ttest using robust SEs: t59= −1.95, P= .05; estimated decrease in neuronal density per 10 years' survival, 4.7%; 95% CI, −0.1% to 9.2%). This finding is in keeping with previous literature.Layerwise comparisons of neuronal size between the 3 patient groups and the control group were adjusted for the effect of age (see Table 2for observed median neuronal sizes within categories defined by cortical layer and patient group). Tests for overall differences between patient groups and control group were undertaken (Table 5). These show that at the single-test 5% level neuronal size differed between the depressed patients and controls in layers 5b and 6. These comparisons do not remain significant after adjusting for multiple layerwise comparisons. However, the value for comparing depressed patients with controls in layer 6 of P= .01 is only slightly exceeding the adjusted significance level of P= .008 and is interpreted as mild evidence for a difference between these groups, taking into account the conservative nature of the Bonferroni procedure. In layer 6, the neuronal size was estimated to be reduced by 23% in depressed patients compared with controls (uncorrected 95% CI, 6%-37%) (Table 5).Table 5. Single 95% Confidence Intervals (CI) and tTests Based on Robust SEs for Comparing Neuronal Size Between Patient Groups and the Control Group (n = 15 per Group) (Comparisons Are Adjusted for Age at Death)*Patient GroupCortical LayerTest for Difference Between Patient Group and Control GroupEstimate of Effect, Estimated Ratio (95% CI)t59PScz (n = 15)1−0.47.640.97 (0.83-1.12)20.32.751.04 (0.83-1.3)30.77.441.09 (0.88-1.34)5a−1.3.200.89 (0.74-1.07)5b−0.84.400.92 (0.75-1.13)6−1.82.070.85 (0.71-1.02)BPD (n = 15)1−0.1.920.99 (0.81-1.21)20.74.461.06 (0.90-1.26)30.12.901.01 (0.81-1.27)5a−0.87.390.91 (0.75-1.12)5b−1.33.190.87 (0.71-1.07)6−1.91.060.80 (0.64-1.01)MDD (n = 15)1−1.37.180.91 (0.78-1.05)21.15.251.10 (0.94-1.28)3−0.88.380.92 (0.76-1.11)5a−0.95.350.90 (0.72-1.13)5b−2.05†0.84 (0.71-1.00)6−2.66.01†0.77 (0.63-0.94)*Scz indicates schizophrenia; BPD, bipolar disorder; and MDD, major depressive disorder.†Significant at the single-test significance level of 5%; not adjusted for multiple layerwise comparisons.COMMENTIn this investigation, we have found evidence for reductions in glial cell density and neuronal size in layer 6 of the ACC in subjects with MDD. The estimated sizes of these reductions are 22% and 23%, respectively (Table 4and Table 5). As glia have important metabolic influences on neuronsand contribute to synaptic functionand neurotransmission,the findings imply that abnormalities of glial function may undermine neuronal function and predispose to MDD.There have been 2 previous stereological investigations in MDD, and both support our finding of reduced glial cell density in MDD.The first study, that of Ongur and colleagues,found reduced glial cell density in the subgenual ACC of the same set of brains as examined in our investigation of supracallosal ACC. The second, by Rajkowska et al,found reduced glial cell density in the dorsolateral prefrontal cortex and the caudal orbitofrontal cortex. As in our investigation, these latter changes were most prominent in the deeper cortical layers and were accompanied by reduced neuronal size. However, there are some differences between the 3 investigations. First, Rajkowska et alfound decreased neuronal density in the prefrontal cortex in MDD, while our study of the ACC and that of Ongur et aldid not, suggesting a possible region-specific effect. Second, Ongur et alfound no reduction in neuronal size in MDD. This difference may relate to the lack of laminar specific data in their study and to the fact that subgenual rather supracallosal ACC was assessed. Ongur et alalso found reduced glial cell density to be most prominent in familial MDD and BPD groups, while we found no evidence for any changes in microscopic neuroanatomy in BPD, and we refrained from smaller subdivisions of the patient groups according to family history. Third, the absolute values for neuronal density differ between the 3 studies. The reasons for these differences are likely to relate to processing differences between our study, which used paraffin-embedded material, and the other studies, which used cryosections from fixed tissueand celloidin sections,respectively.Our investigation found a trend for an estimated reduced glial cell density of 20% in layer 6 in schizophrenia (Table 4). While contrasting with some,it is in keeping with previous work showing glial cell reductions in the orbitofrontal,anterior cingulate,and primary motor cortices.These reductions have been moderate,with evidence that schizophrenic subjects with affective symptoms are more likely to show reduced glial cell density.Reductions in the levels of glial fibrillary acidic protein,which labels astrocytes, and myelin basic protein,which labels oligodendroglia in the anterior frontal cortex in schizophrenia and MDD, have also been demonstrated; these findings point to the potential cellular basis of the glial cell deficit described in our study.We found no change in neuronal density in the ACC in schizophrenia (Table 3). This contrasts with the studies of Benes and colleagues,which found reduced density of small neurons in layers 2 through 6,and reduced density of all neurons in layer 5 of the ACCin schizophrenia. These contrasting results may be caused by differences in the region within the ACC that was assessed; for example, Benes and colleaguesmay have examined perigenual rather the supracallosal ACC as assessed in our investigation. Additionally, the smaller size of the sampled fields in our investigation may have affected our sensitivity to detect changes in the density of the larger neurons. However, this would not explain the difference in the results regarding smaller neurons; we used a 100-times oil-immersion lens that maximized our ability to distinguish glia from small neurons. Similar discrepancies have also been reported regarding neuronal density in the prefrontal cortex.Neuronal size has previously been reported to be reduced in the prefrontal cortex in schizophrenia,but we found no evidence for this reduction in our study (Table 5).In our investigation, tissue was available from 1 hemisphere of each subject; consequently, we were unable to assess true laterality effects within our subjects. We did find, however, that neuronal and glial cell densities were increased in the left hemispheres compared with the right hemispheres (Table 3). This finding may reflect genetically determined structural asymmetries in the normal brain,such as may be responsible for the recently reported left-lateralized increase in the ACC fissurization in normal subjects.We also found a trend for a dependence on hemisphere of the changes in glial cell density in layers 1 and 3 between controls and MDD. This finding is consistent with left-lateralized changes reported in the ACC in MDD in functional neuroimaging investigations.There are several methodological advantages of this study. These include the pragmatic application of stereologically derived methods, the assessment of all cortical layers, and the presence of 3 psychiatric groups with good sample size, clinical details, and careful pathological characterization. There are a number of potential confounding factors. For example, reduced glial cell density or neuronal size could be secondary to pharmacological treatments or group differences in tissue pH. In our analysis, we found that increasing tissue pH was predictive of increasing glial density. Consequently, we corrected for this potential confounding factor in our analysis. We found no evidence that pharmacological treatments (neuroleptics, antidepressants, or mood stabilizers) had predictive effects on cell density or neuronal sizes. Indeed, the literature that is available indicates that pharmacological treatments increase rather than decrease their densities. For example, a recent investigation suggests that chronic exposure to neuroleptics increases glial density in the prefrontal cortex.There is also preliminary in vitro evidence that antidepressants activate microglia and cause proliferation of oligodendroglial cells,and that lithium treatment is associated with gliosis.Together, these findings suggest that our finding of reduced glial cell density is unlikely to be a consequence of pharmacological treatments or group differences in tissue pH.There are at present no clear biological mechanisms to explain our findings. However, there may be a clue in the shared neuroanatomy in schizophrenia and MDD. Reduced hippocampal and cortical volumes,neuronal size,and dendritic spine densityare features of both schizophrenia and MDD, and we have now shown reduced glial cell density in both disorders. These similarities suggest that there may be a shared pathophysiological mechanism. One intriguing possibility is stress-related, glucocorticoid-mediated toxic effects.The consequences of elevated levels of glucocorticoidsare consistent with both the macroscopic and microscopic neuroanatomy described in MDDand schizophrenia.Elevated levels of glucocorticoids are known to reduce astrocyte activity and function,and reduced levels of the messenger RNA for the glucocorticoid receptor are reported in the frontal cortex and hippocampus of subjects with MDD and schizophrenia.Consequently, glucocorticoids may act directly on neurons, or indirectly through glia to undermine neuronal and cortical function in both disorders.However, although the etiology of the glial cell loss is not clear, the consequences of such loss are potentially far-reaching because of the crucial roles of glial cells in neurotransmission and synaptic function,buffering neurochemical messengers,and providing metabolic support for neurons.Furthermore, glial cells express receptorsand transportersthat are implicated in the monoaminergic neurotransmission abnormalities of MDDand schizophrenia.With regard to laminar specificity of cellular pathology, we found that glial cell density and neuronal size were significantly reduced only in layer.The deeper cortical layers receive noradrenergic afferents from the locus ceruleus,which is implicated in the pathology of MDD,and they also project via glutamatergic pathways to subcortical structures involved in the control of motor functions.Therefore, our findings of altered layer 6 cytoarchitecture are consistent with the clinicopathological picture of MDD.The glial cells sampled in this investigation do not represent a homogeneous population. They are composed of distinct populations of oligodendrocytes, microglia, and astrocytes, whose crucial role in cortical function is being actively reevaluated.From our current data, we cannot identify which of these populations are particularly affected. Future work will be directed at identifying which of the main glial populations is deficient and whether this deficiency is primary or secondary to the disease process.JTCoyleRSchwarczMind glue: implications of glial cell biology for psychiatry.Arch Gen Psychiatry.2000;57:90-93.FWPfiegerBABarresNew views on synapse-glia interactions.Curr Opin Neurobiol.1996;6:615-621.FWPfriegerBABarresSynaptic efficacy enhanced by glial cells in vitro.Science.1997;277:1684-1687.AAraqueVParpuraRPSanzgiriPGHaydonTripartite synapses: glia, the unacknowledged partner.Trends Neurosci.1999;22:208-215.AVerkhratskyRKOrkandHKettenmannGlial calcium: homeostasis and signaling function.Physiol Rev.1998;78:99-141.SMennerickCFZorumskiGlial contributions to excitatory neurotransmission in cultured hippocampal cells.Nature.1994;368:59-62.PJMagistrettiLPellerinDLRothmanRGShulmanEnergy on demand.Science.1999;283:496-497.JAColesNJAbbotSignalling from neurones to glial cells in invertebrates.Trends Neurosci.1996;19:358-362.MTsacopoulosPJMagistrettiMetabolic coupling between glia and neurons.J Neurosci.1996;16:877-885.PRakicSpecification of the cerebral cortical areas.Science.1988;241:170-176.LDSelemonMSLidowPSGoldman-RakicIncreased volume and glial density in primate prefrontal cortex associated with chronic antipsychotic drug exposure.Biol Psychiatry.1999;46:161-172.GRajkowskaJJMiguel-HidalgoJWeiGDilleySDPittmanHYMeltzerJCOverholserBLRothCAStockmeierMorphometric evidence for neuronal and glial prefrontal pathology in major depression.Biol Psychiatry.1999;45:1085-1098.DOngurWCDrevetsJLPriceGlial reduction in the subgenual prefrontal cortex in mood disorders.Proc Natl Acad Sci U S A.1998;95:13290-13295.GRajkowskaJJWeiJJMiguel-HidalgoCAStockmeierGlial and neuronal pathology in rostral orbitofrontal cortex in schizophrenic postmortem brain [abstract].Schizophr Res.1999;36:84.PJHarrisonThe neuropathology of schizophrenia: a critical review of the data and their interpretation.Brain.1999;122:593-624.DCSteffensKKrishnanStructural neuroimaging and mood disorders: recent findings, implications for classification and future directions.Biol Psychiatry.1998;43:705-712.RWMcCarleyCGWibleMFruminYHirayasuJLLevittAFischerMEShentonMRI anatomy of schizophrenia.Biol Psychiatry.1999;45:1099-1119.DEbertKPEbmeierThe role of the cingulate gyrus in depression: from functional anatomy to neurochemistry.Biol Psychiatry.1996;39:1044-1050.DCSteffensRRKrishnanStructural neuroimaging and mood disorders: recent findings, implications for classification, and future directions.Biol Psychiatry.1998;43:705-712.SMLawrieSSAbukmeilBrain abnormality in schizophrenia: a systematic and quantitative review of volumetric magnetic resonance imaging studies.Br J Psychiatry.1998;172:110-120.MARogersJLBradshawCPantelisJGPhillipsFrontostriatal deficits in unipolar major depression.Brain Res Bull.1998;47:297-310.CJBenchRSFrackowiakRJDolanChanges in regional cerebral blood flow on recovery from depression.Psychol Med.1995;25:247-251.WCDrevetsJLPriceJRSimpsonRDToddTReichMVannierMERaichleSubgenual prefrontal cortex abnormalities in mood disorders.Nature.1997;386:824-827.YHirayasuMEShentonDSalisburyJSKwonCGWibleIAFischerDYurgelun-ToddCZarateRKikinisFAJoleszMDMcCarleySubgenual cingulate cortex volume in first-episode psychosis.Am J Psychiatry.1999;156:1091-1093.NCAndreasenDSO'LearyMFlaumPNopoulosGLWatkinsLLBales PontoRDHichwaHypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients.Lancet.1997;349:1730-1734.RJDolanPFletcherCDFrithKJFristonRSFrackowiakPMGrasbyDopaminergic modulation of impaired cogntive activation in the anterior cingulate cortex in schizophrenia.Nature.1995;378:180-182.MHHaznedarMSBuchsbaumCLuuEAHazlettBVSiegelJLohrJWuRJHaierWEBunneyDecreased anterior cingulate gyrus metabolic rate in schizophrenia.Am J Psychiatry.1997;154:682-684.CSCarterMMintunTNicholsJDCohenAnterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [15 O] H2O PET study during single-trial Stroop task performance.Am J Psychiatry.1997;154:1670-1675.MMesulamThe functional anatomy and hemispheric specialisation for directed attention.Trends Neurosci.1983;6:384-387.MIPosnerSEPetersenThe attention system of the human brain.Annu Rev Neurosci.1990;13:25-42.PFLiddleKJFristonCDFrithSRHirschTJonesRSFrackowiakPatterns of cerebral blood flow in schizophrenia.Br J Psychiatry.1992;160:179-186.GRajkowskaLDSelemonPSGoldman-RakicNeuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and huntington disease.Arch Gen Psychiatry.1998;55:215-224.LDSelemonGRajkowskaPSGoldman-RakicAbnormally high neuronal density in the schizophrenic cortex: a morphometric analysis of prefrontal area 9 and occipital area 17.Arch Gen Psychiatry.1995;52:805-818.GRajkowska-MarkowJJMiguel-HidalgoJWeiCAStockmeirReductions in glia distinguish orbitofrontal region from dorsolateral prefrontal cortex in schizophrenia [abstract].Abstracts Soc Neurosci.1999;25:818.FMBenesJMcSparrenEDBirdJPSanGiovanniSLVincentDeficits in small interneurons in prefrontal and cingulate cortices in schizophrenic and schizoaffective patiants.Arch Gen Psychiatry.1991;48:996-1001.FMBenesJDavidsonEDBirdQuantitative cytoarchitectural studies of the cerebral cortex of schizophrenics.Arch Gen Psychiatry.1986;43:31-35.EFTorreyMWWebsterMKnableNJohnstonRHYolkenThe Stanley Foundation brain collection and Neuropathology Consortium.Schizophr Res.2000;44:151-155.American Psychiatric AssociationDiagnostic and Statistical Manual of Mental Disorders, Fourth Edition.Washington, DC: American Psychiatric Association; 1994.BAVogtStructural organisation of cingulate cortex: areas, neurons, and somatodendritic transmitter receptors.In: Vogt BA, Gabriel M, eds. Neurobiology of the Cingulate Cortex and Limbic Thalmus: A Comprehensive Handbook. Boston, Mass: Birkhauser; 1993.Not AvailableImage-Pro Plus[computer program]. Version 4.0 for Windows.Baltimore, Md: Media Cybernetics; 1998.HJGundersenPBaggerTFBendtsenSMEvansLKorboNMarcussenAMollerKNielsenJRNyengoaldBPakkenbergFBSorensenAVesterbyMJWestThe new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis.APMIS.1988;96:857-881.HJGundersenThe nucleator.J Microsc.1988;151:3-21.RWPaynePWLanePGDigbySAHardingPKLeechGWMorganADToddRThompsonGTWilsonSJWelhamRPWhiteGenstat 5, Release 3, Reference Manual.Oxford, England: Oxford University Press; 1993.RSchallEstimation in generalized linear models with random effects.Biometrika.1991;78:719-727.PMcCullaghJANelderGeneralised Linear Models.2nd ed. London, England: Chapman & Hall; 1989.RDTerryRDeTeresaLAHansenNeocortical cell counts in normal human adult aging.Ann Neurol.1987;21:530-539.GRajkowskaJJWeiJJMiguel-HidalgoCAStockmeierGlial and neuronal pathology in rostral orbitofrontal cortex in schizophrenic postmortem brain [abstract].Schizophr Res.1999;36:84.NJohnston-WilsonCDSimsJPHofmannLAndersonADShoreEFTorreyRYolkenDisease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder and major depressive disorder.Mol Psychiatry.2000;5:142-149.WGHonerPFalkaiCChenVArangoJJMannAJDworkSynaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness.Neuroscience.1999;91:1247-1255.SAkbarianJJKimSGPotkinJOHagmanATafazzoliWEBunneyEGJonesGene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics.Arch Gen Psychiatry.1995;52:258-266.TJCrowJBallSRBloomRBrownCJBrutonNColterCDFrithECJohnstoneDGOwensGWRobertsSchizophrenia as an anomaly of development of cerebral asymmetry: a postmortem study and a proposal concerning the genetic basis of the disease.Arch Gen Psychiatry.1989;46:1145-1150.AIdeCDolezalMFernandezELabbeRMandujanoSMontesPSeguraGVerschaePYarmuchFAboitizHemispheric differences in variability of fissural patterns in parasylvian and cingulate regions of human brains.J Comp Neurol.1999;410:235-242.IKGrundtHNylandActivation of cultured glial cells by amitryptilene and platelet activating factor.Toxicol In Vitro.1994;8:1015-1020.ERochaRRodnightChronic administration of lithium chloride increases immunodetectable glial fibrillary acidic protein in the rat hippocampus.J Neurochem.1994;63:1582-1584.ERochaMAchavalPSantosPRodnightLithium treatment causes gliosis and modifies the morphology of hippocampal astrocytes in rats.Neuroreport.1998;9:3971-3974.GRosoklijaGToomayanSPEllisJKeilpJJMannNLatovAPHaysAJDworkStructural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: preliminary findings.Arch Gen Psychiatry.2000;57:349-356.DCotterCMParianteIPEverallGlial cell abnormalities in major psychiatric disorders: the evidence and implications.Brain Res Bull.In press.ESBrownAJRushBSMcEwenHippocampal remodelling and damage by corticosteroids: implications for mood disorders.Neuropsychopharmacology.1999;21:474-484.RSapolskyGlucocorticoids, stress and exacerbation of excitotoxic neuron death.Semin Neurosci.1994;6:323-331.BSMcEwenPossible mechanisms for atrophy of the human hippocampus.Mol Psychiatry.1997;2:255-262.MNStarkmanSSGebarskiSBerentDESchteingartHippocampal formation volume, memory dysfunction and cortisol levels in patients with Cushing's syndrome.Biol Psychiatry.1992;32:756-765.KLCrossinMHTaiLAKrushelVPMauroGMEdelmanGlucocorticoid receptor pathways are involved in the inhibition of astrocyte proliferation.Proc Natl Acad Sci U S A.1997;94:2687-2692.MJWebsterJO'GradyCOrthmannCWeickertDecreased glucocorticoid receptor mRNA levels in individuals with depression, bipolar disorder and schizophrenia [abstract].Schizophr Res.2000;41:111.JTPorterKDMcCarthyAstrocytic neurotransmitter receptors in situ and in vivo.Prog Neurobiol.1997;51:439-455.VArangoMDUnderwoodPJMcDevittAVGubbiJJMannLocalised alterations in pre- and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims.Brain Res.1995;688:121-133.GSedvallLFardeChemical brain anatomy in schizophrenia.Lancet.1995;346:743-749.DALewisJHMorrisonNoradrenergic innervation of monkey prefrontal cortex: a dopamine-hydroxylase immunohistochemical study.J Comp Neurol.1989;282:317-330.GAOrdwayPSWiddowsonKSSmithAHalarisAgonist binding to 2-adrenoceptors is elevated in the locus coeruleus from victims of suicide.J Neurochem.1994;63:617-624.LDSelemonPSGoldman-RakicLongitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey.J Neurosci.1985;5:776-794.Accepted for publication December 21, 2000.Funded by a Clinician Scientist Fellowship from the Medical Research Council, London, England (Dr Cotter), and a project award from the Theodore and Vada Stanley Foundation, Bethesda, Md. Postmortem brains were donated by the Stanley Foundation Brain Bank Consortium, Bethesda, courtesy of Llewellyn B. Bigelow, MD, Juraj Cervenak, MD, Mary M. Herman, MD, Thomas M. Hyde, MD, Joel Kleinman, MD, Jose D. Paltan, MD, Robert M. Post, MD, E. Fuller Torrey, MD, Michael Knable, MD, Maree J. Webster, MD, and Robert Yolken, MD.Corresponding author: David R. Cotter, MRCPsych, PhD, Department of Psychological Medicine and Neuropathology, Institute of Psychiatry, DeCrespigny Park, London SE5 8AF, England (e-mail: david.cotter@iop.kcl.ac.uk). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png JAMA Psychiatry American Medical Association

Reduced Glial Cell Density and Neuronal Size in the Anterior Cingulate Cortex in Major Depressive Disorder

Loading next page...
 
/lp/american-medical-association/reduced-glial-cell-density-and-neuronal-size-in-the-anterior-cingulate-gzj7itWoCM
Publisher
American Medical Association
Copyright
Copyright 2001 American Medical Association. All Rights Reserved. Applicable FARS/DFARS Restrictions Apply to Government Use.
ISSN
2168-622X
eISSN
2168-6238
DOI
10.1001/archpsyc.58.6.545
Publisher site
See Article on Publisher Site

Abstract

BackgroundGlial cells are more numerous than neurons in the cortex and are crucial to neuronal function. There is evidence for reduced neuronal size in schizophrenia, with suggestive evidence for reduced glial cell density in mood disorders. In this investigation, we have simultaneously assessed glial cell density and neuronal density and size in the anterior cingulate cortex in schizophrenia, major depressive disorder, and bipolar disorder.MethodsWe examined tissue from area 24b of the supracallosal anterior cingulate cortex in 60 postmortem brain specimens from 4 groups of 15 subjects, as follows: major depressive disorder, schizophrenia, bipolar disorder, and normal controls. Glial cell density and neuronal size and density were examined in all subjects using the nucleator and the optical disector.ResultsGlial cell density (22%) (P= .004) and neuronal size (23%) (P= .01) were reduced in layer 6 in major depressive disorder compared with controls. There was some evidence for reduced glial density in layer 6 (20%) (P= .02) in schizophrenia compared with controls, before adjusting for multiple layerwise comparisons, but there were no significant changes in neuronal size. There was no evidence for differences in glial density or neuronal size in bipolar disorder compared with controls. Neuronal density was similar in all groups to that found in controls.ConclusionThese findings suggest that there is reduced frontal cortical glial cell density and neuronal size in major depressive disorder.THERE ARE 3 main types of glial cell populations in the central nervous system and together they constitute well over half of all cells in the brain. Until recently, they have been largely viewed as "passive handmaidens" to neurons, and their central role in cortical and neuronal function has not been fully appreciated.They have important roles in synaptic function,clearance of extracellular ionsand transmitters,neuronal metabolism,and neuronal migration.There is also some evidence that cortical glial cell numbers may be increased by neuroleptic medication in primates,that glial cell density is reduced in the prefrontal cortex,and that the subgenual anterior cingulate cortex (ACC)is reduced in major depressive disorder (MDD) and the orbitofrontalcortex in schizophrenia. These findings suggest that glial cell dysfunction may be involved in the pathophysiology of major psychiatric disorders.Macroscopic investigations of schizophrenia, bipolar disorder (BPD), and MDD show many similarities in brain pathology, with the differences being quantitative rather than qualitative. For example, ventricular dilatation and reduced hippocampal and cortical volumes are seen in schizophrenia,but also to a less marked degree in MDD and BPD.These investigations also indicate which cortical regions are predominantly affected in MDD and schizophrenia.In MDD, there is reduced metabolism in the ACCon the left side.Abnormalities of the prefrontal cortex are also described in schizophrenia,and while the ACC is again implicated,the changes are neither so marked nor so lateralized as in MDD. The presence of these ACC abnormalities in MDD and schizophrenia are consistent with the known functions of this cortical region in information processing, attention, and in the expression and modulation of emotion.As these functions are altered in schizophreniaand MDD,this area is a candidate region in which to search for the presence of distinct microscopic neuroanatomical substrates for these disorders.Microscopically, investigations of schizophrenia point to abnormalities of neuronal cytoarchitecture and neuropil,with evidence for reduced neuronal size.Whether such changes are also present in MDD and BPD is not yet clear, for there have been few investigations. In MDD, reduced glial density has been described,but this has not been a consistent finding in schizophrenia.It has been proposed that reduced glial cell density may be specific to MDD and BPD,and alternatively, that if reduced glial cell density is a feature of schizophrenia, then it exhibits a region-specific distribution.In this study, we set out to characterize neuronal and glial cell density and neuronal size in the ACC in normal human brain, schizophrenia, BPD, and MDD.SUBJECTS AND METHODSSUBJECTSHuman brain specimens from Brodmann area 24 were obtained from the Stanley Foundation Brain Consortium.The sample consisted of 60 subjects (15 normal controls, 15 subjects with schizophrenia, 15 with BPD, and 15 with MDD) and is the same as that used previously to investigate subgenual ACC.Diagnoses were made according to DSM-IVcriteria. Detailed case summaries were provided on demographic, clinical, and histological information (see Table 1for group summary details). All brains underwent clinical neuropathological examination and none demonstrated evidence of neurodegenerative changes or other pathological lesions. Messenger RNA levels of the housekeeping gene glyceraldehyde phosphate dehydrogenasewere measured in the Stanley Foundation Brain Consortium laboratory by the reverse transcription polymerase chain reaction and they were excellent to good in all groups, demonstrating good tissue preservation.Table 1. Group Summaries of Demographic, Clinical, and Histological Information on the Brains Donated by the Stanley Foundation*Variable‡Group†ControlsSczBPDMDDDemographicsSample size15151515Age at death in years, mean ± SD48.1 ± 10.744.5 ± 13.142.3 ± 11.746.5 ± 9.3HistologicalPostmortem interval in hours, mean ± SD23.7 ± 9.9433.7 ± 14.632.5 ± 16.127.5 ± 10.7Brain hemisphereRight7686Left8979pH, mean ± SD6.27 ± 0.246.16 ± 0.266.18 ± 0.246.20 ± 0.23Cause of deathCPD13737Traffic accident2001Suicide0794Alcohol intoxication0101Pneumonia0011Subdural hematoma0010Malnutrition0010Drowning0001ClinicalDuration of disorder in years, mean ± SD0 ± 021.3 ± 11.420.1 ± 9.712.7 ± 11.1Fluphenazine milligram equivalents§Minimum0000Median035 00075000Maximum0200 00060 0000Past alcohol/drug abuse or dependenceNo13121214Yes2331Current alcohol/drug abuse or dependenceNo15121112Yes0343Treated with antidepressants at deathNo151096Yes0569Lithium treatment at deathNo1512513Yes0242Other mood stabilizer0160Family history of disorder&par;None151083Scz0310BPD0031MDD0238Unknown0013Death by suicideNo151168Yes0497*Scz indicates schizophrenia; BPD, bipolar disorder; MDD, major depressive disorder; and CPD, cardiopulmonary disease.†There were 9 males and 6 females in each group.‡Italics indicate that the variable is a potential predictor of cell density and neuronal size in the analysis.§Fluphenazine milligram equivalents is an estimate of the lifetime neuroleptic dose in fluphenazine equivalent dose in milligrams.&par;Family history was defined as a positive for Scz, BPD, or MDD if 1 or more first-degree relatives had a diagnosis of that same disorder, negative if there was no history, and unknown if insufficient information was available. One subject with BPD had a family history of BPD and MDD.Tissue was available from only 1 hemisphere of each brain, with roughly equal numbers sampled in a random manner from each side of the brain (Table 1). Hemispheres were fixed in 10% phosphate-buffered formalin and then cut in coronal sections of roughly 1-cm thickness. From these slices, a block was taken from the supracallosal ACC approximately 2-cm caudal to the tip of the genu of the corpus callosum and processed to paraffin wax. From these blocks, a series of 20 sections of 30-µm thickness were taken and 5 sections were systematically randomly sampled for analysis. All sections were then stained with cresyl violet according to standard methods.IDENTIFICATION OF CORTICAL LAMINAFor each case, Brodmann area 24b of the ACC was identified and selected for analysis according to macroscopic and microscopic criteria.This region has clear laminar boundaries, making it a particularly suitable region for the delineation of laminar specific variations in cortical cytoarchitecture.Layer 5 is relatively easily divided into distinct sublayers (layers 5a and 5b), which we assessed separately, in addition to the remaining 4 layers. The width of each cortical layer was assessed using an image analysis system (Image-Pro Plus; Media Cybernetics, Baltimore, Md),with which we obtained a series of contiguous images (20 × 25 images) at 20-times objective magnification, from which a single composite image was formed. The laminar boundaries were identified on this image and the mean laminar width was calculated. The percentage of total cortical width contributed by each layer in each group was then calculated (Table 2).Table 2. Observed Median Neuronal Sizes in Square Micrometers and Cortical Height (Expressed as Percentage of Total Cortical Thickness) Within Categories Defined by Cortical Layer and Patient Group (n = 15 per Group)*GroupLayer†1235a5b6Neuronal sizeControl106 (64, 166)263 (129, 529)493 (203, 952)737 (310, 1635)804 (337, 1778)741 (358, 1386)Scz103 (66, 170)276 (148, 525)547 (243, 1024)684 (274, 1443)756 (302, 1679)649 (311, 1223)BPD109 (65, 177)286 (141, 547)505 (216, 993)687 (293, 1480)686 (309, 1510)602 (285, 1202)MDD92 (58, 152)289 (158, 538)494 (199, 900)710 (256, 1556)676 (286, 1471)596 (279, 1092)Cortical heightControl10.8 (9.2, 11.9)10.3 (9.1, 12.0)25.2 (23.6, 26.2)11.8 (10.8, 12.9)14.7 (12.7, 16.7)26.7 (23.3, 28.5)Scz10.0 (7.3, 12.3)9.6 (8.2, 11.1)26.2 (21.7, 27.3)12.1 (11.2, 13.2)13.4 (13.1, 14.8)27.7 (23.2, 35.2)BPD10.9 (7.9, 12.0)10.4 (8.3, 11.3)25.5 (21.8, 27.0)11.3 (10.9, 12.0)14.0 (13.3, 15.4)27.3 (23.6, 35.0)MDD11.3 (9.7, 11.8)10.0 (9.0, 12.0)24.9 (23.7, 29.2)11.8 (11.2, 12.8)13.6 (12.8, 14.2)26.2 (24.4, 28.8)*Scz indicates schizophrenia; BPD, bipolar disorder; and MDD, major depressive disorder.†The lower and upper quartiles are included in parentheses.3-DIMENSIONAL CELL COUNTING AND NEURONAL SIZE ESTIMATESIn this investigation, neurons were identified by the presence of a cresyl violet–stained cytoplasm, a single nucleolus, and their generally larger shape and nonspherical outline. Glia were identified by the absence of stained cytoplasm, the presence of a thicker nuclear membrane, and more heterogeneous chromatin within the nucleus.Sections were viewed using a BH2 Olympus microscope (Olympus Optical Co [UK] Ltd, London, England) with a 100-times (numerical aperture, 1.4) oil-immersion objective lens, to which was attached a color video camera (TK1280-E; Microinstruments Ltd, Oxon, England), a z-axis depth gauge (Heidenhain [GB] Ltd, London, England) (accurate to <1 µm), and an Olympus x- and y-axis movement gauge. After the mounting and the staining of tissue sections, the thickness of the tissue sections was assessed. This had reduced from 30 µm to a mean (SD) of 23.4 (2.8) µm. Consequently, using an optical disector with a depth of 15 µm, our guard volumes above and below the disector averaged 4.8 µm. Cell-density estimations were made with the aid of image analysis software (Stereology 2.5; Kinetic Imaging, Liverpool, England) according to the stereological optical disector method.The dimensions of the disector used were 50.5 × 37.5 µm in the x- and the y-axis, respectively. There was 1 disector per field.A systematic random sampling strategy was optimized before the investigation, so that an equal proportion of sampled neurons was obtained from each of the 5 sections used in each case. This involved estimating the number of fields required to give more than 100 sampled neurons per layer (and sublayers, in the case of 5a and 5b) per case, and then calculating the required size of the steps (taken in a sine wave fashion with random start) between fields, so that the entire region of each cortical layer of Brodmann area 24b in the tissue section was sampled. An average of 48 fields were counted per layer per case for neuronal estimations, and 33 fields for glial estimations. A mean (SD) of 103 (3.2) neurons and 85 (15) glia were counted in each layer of each case. Values for the coefficient of error of the neuronal and glial density estimates in the different cortical layers were less than 5% and 6%, respectively. Neuronal and glial cell densities are expressed as cell per mm3/103.The neuronal size of all disector sampled neurons were estimated using the stereological estimator of number-weighted volume: the nucleator.Thus, we calculated the size (expressed in cubic micrometers) of more than 100 neurons from each individual layer of each subject. As glial cytoplasm was unstained, glial cell size was not assessed.STATISTICAL ANALYSISAnalysis of Neuronal and Glial Cell DensitiesThe objective of the statistical analysis was to compare within each cortical layer the neuronal and glial cell densities of the 3 patient groups (schizophrenia, BPD, and MDD) with the control group. Layerwise density data (cell counts and sizes of search area) were obtained by combining the 5 sections and sampled fields per layer. Because of their possibly skewed distributions, the density data are summarized by their medians (Table 3). A number of subject-specific clinical and demographic variables with potential to affect cell densities were recorded (these are listed in Table 1in italics. To compare groups using an adequate model, a forward-selection procedure was employed to identify variables that could be shown empirically to predict densities. Within each layer, groups were then compared using models that adjusted for these variables.Table 3. Observed Median Neuronal and Glial Densities (Cells per Cubic Millimeter/103) Within Categories Defined by Brain Hemisphere, Cortical Layer, and Subject Group (15 per group)*Cell TypeGroupHemisphereGroup†1235a5b6RightLeftRightLeftRightLeftRightLeftRightLeftRightLeftNeuronsControl58.3 (47.5, 67.0)53.0 (47, 59.9)184.8 (169.9, 202.6)199.7 (184.8, 231)92.4 (81.2, 99.4)101.1 (92.1, 109.3)118 (100, 126.2)117.4 (110.5, 127.4)89.2 (71.9, 90.4)85.1 (80.7, 93.6)58.7 (52.3, 63)62.4 (55.1, 64.8)Scz53.6 (47.2, 57.6)51.8 (45.8, 60.6)158.7 (142.2, 193.7)203.3 (188.9, 247.1)93.1 (81.8, 105.6)92.4 (88.1, 97.3)118.7 (109.9, 127.5)123 (113.3, 128.4)85.8 (82.9, 87.8)84.3 (77.2, 90.9)62.1 (53, 80.1)61.2 (51.5, 64.4)BPD49.5 (40.2, 56.2)71.1 (57, 73.5)161.5 (145.9, 199)217.2 (179.8, 228.3)75.5 (73.8, 96.8)106.6 (99.8, 106.6)97.5 (89.5, 112.6)119.2 (113.9, 139.6)79.6 (70.9, 81)102.4 (86.6, 102.4)51.1 (49.3, 53.1)63.6 (61.4, 70.4)MDD50.4 (47.2, 54.7)49.7 (45.3, 66.3)167.5 (144.7, 191.9)179.4 (168, 201.6)87 (83.5, 91)88.9 (75.8, 91.6)116.5 (108.7, 121.9)117.7 (109.1, 119.2)82.5 (77, 86.8)86.3 (83.5, 93.2)56.9 (56.3, 61.1)61.1 (57, 70.5)GliaControl113.9 (86.3, 132.5)144.9 (113.7, 182.3)65.2 (36.9, 79.6)72.4 (59.7, 85.5)73.8 (57.5, 88.9)94.9 (85.1, 113.9)87.4 (67.7, 102.1)104.8 (95.4, 113.2)89.7 (74.5, 112.1)108.4 (99.5, 130)126.5 (98.8, 140.3)169.6 (138, 177.9)Scz123.4 (106.6, 154)126.8 (86.4, 135.8)62.7 (39.1, 77.5)61.5 (46.7, 73.6)79.2 (56.9, 89.7)87.9 (75.7, 97.1)64.3 (46.5, 76)96.3 (77.7, 114.6)88.9 (68.5, 96.9)93.6 (75.2, 115.6)102 (81.1, 129.7)121.2 (103.3, 130.9)BPD122.7 (91.5, 151.5)118.1 (105.7, 120.4)61.9 (52.4, 84.4)71.1 (58.4, 76.5)72.5 (67.4, 88.7)85.7 (81.1, 90.9)83.6 (67, 104.7)99.9 (81.6, 105.3)84.9 (68.7, 109.2)107.3 (99.8, 116.6)132.2 (105.1, 142.2)135.8 (120, 150.7)MDD111.3 (92.4, 147.9)106.6 (71.3, 117.6)72.7 (63.3, 79)61.1 (50.2, 64.7)85.7 (68.6, 92.4)59.8 (53.7, 90.4)77.7 (70, 87)82.5 (67.8, 111.4)81.8 (71.1, 105.6)83.2 (72.1, 111.5)105.4 (99.9, 109.6)100.9 (89.9, 121.1)*Scz indicates schizophrenia; BPD, bipolar disorder; and MDD, major depressive disorder.†Lower and upper quartiles are included in parentheses.In the model selection stage, all layerwise counts were modeled simultaneously, employing a log-link Poisson model that used the size of the search area as an offset. A dispersion parameter was introduced to account for spatial clustering within fields or sections. In addition, a random effect for subject was included to account for layerwise densities of the same subject being more similar than densities from different subjects. The factor layer was always included in the model, since by definition densities vary between cortical layers. In the stepwise-forward procedure, the Pvalue threshold for inclusion of a new variable was chosen to be 10%. The random-effects Poisson models were fitted using the procedure generalized linear mixed model in the statistical package Genstat 5,which employs the Schall methodto fit a generalized linear mixed model.Having identified empirical predictors, a log-link Poisson model, using size of search area as an offset and allowing for overdispersion because of spatial clustering, was fitted to the cell count data in each layer. Density ratios between each of the 3 psychiatric groups and the control group adjusted for the empirical predictors were estimated. Since hemisphere was identified as a predictor of neuronal as well as glial density (see the "Results" section), we allowed for the density ratios to differ between hemispheres. Accumulated analysis of deviance,using the experimental method, was employed to test for differences between the patient groups and the control group. To account for multiple layerwise testing, the Pvalues of the group comparisons can be compared with .05/6 = 0.008 to achieve an experiment-wise type 1 error probability of 5% according to the Bonferroni correction. This Poisson modelling was again carried out in Genstat 5.Analysis of Neuronal SizesThe objective of the statistical analysis was to compare within each cortical layer neuronal sizes of the 3 patient groups with the control group. Size was recorded for each neuron identified, yielding approximately 100 data points per case and layer (from 5 tissue sections with approximately 10 fields per section and layer). Because of their positively skewed distributions, the neuronal size data are summarized by their medians (Table 2) and analyzed on the log-scale, in which empirical distributions were well approximated by normal distributions. We employed robust SEs when fitting our regression models. Such inferences are robust against correlations between repeated observations on the primary sampling units. Here the cases constituted the (independent) primary sampling units. The analysis of the neuronal size data was carried out in analogy to the analyses of the density data. Out of the variables marked with italics in Table 1, empirical predictors were identified using a forward-selection procedure and group comparisons adjusted for these variables. The robust model fitting was carried out in Stata 6.RESULTSANALYSIS OF NEURONAL DENSITIESTwo predictors of neuronal density were identified at the model selection stage: age of the patient at death (Wald test: χ21= 6, P= .01; estimated increase in neuronal density per 10 years' survival, 3.4%; 95% confidence interval [CI], 0.67%-6.3%) and the brain hemisphere from which the sections were taken (Wald test: χ21= 5.5, P= .02; estimated increase in neuronal density for left hemisphere relative to right hemisphere, 7.5%; 95% CI, 1.2%-14.2%).Layerwise comparisons between the 3 patient groups and the control group were adjusted for the effect of age and hemisphere (see Table 3for observed median neuronal densities within categories defined by brain hemisphere, cortical layer, and patient group). There was some evidence that the ratio of neuronal density between the BPD group and the control group depended on the hemisphere of the brain in layer 1 at the single test significance level of 5% (F1,51= 4.31, P= .04). However, this evidence of an interaction disappeared after adjusting for the 6 layerwise comparisons. None of the other comparisons were significant, even at the unadjusted level of 5%.ANALYSIS OF GLIAL CELL DENSITIESTwo predictors of glial density were identified at the model selection stage; the pH of the tissue (Wald test: χ21= 7.6 P= .006; estimated increase in glial density of 4% per 0.1 increase in pH; 95% CI, 1.6%-6.6%) and the brain hemisphere (Wald test: χ21= 5.1, P= .02; estimated increase in glial density for left hemisphere relative to right hemisphere, 14%; 95% CI, 1.8%-27.6%).Layerwise comparisons between the 3 patient groups and the control group were adjusted for the effect of pH and hemisphere (see Table 3for observed median glial densities within categories defined by brain hemisphere, cortical layer, and patient group). Tests for overall differences between patient groups and control group as well as their interactions with hemisphere were carried out (Table 4). Not adjusting for multiple layerwise comparisons, there seemed to be a significant difference between the schizophrenic and the control group and between the depressed patients and the control group in layer 6 (Figure 1). In addition, the ratio of glial density between the depressed group and the control group seemed to depend on the hemisphere of the brain in layers 1 and 3. However, after adjusting for the 6 layerwise comparisons, at the experiment-wise 5% level, the only significant difference was between the depressed group and the control group in layer 6 (F1,51= 8.9, P= .004). In layer 6, the glial density was estimated to be reduced by 22% in depressed patients compared with controls (uncorrected 95% CI, 7%-35%) (Table 4).Table 4. Approximate F Tests and Comparison of Glial Cell Density Between Patient Groups and the Control Group (n = 15 per Group) From Accumulated Analysis of Deviance (Experimental Method), and Single 95% Confidence Intervals (CI) for Glial Cell Density Ratios Between Patient Groups and the Control Group (Adjusted for pH and Hemisphere)*Patient GroupCortical LayerTest for Overall Difference Between Patient Group and Control GroupEstimate of Effect, Estimated Ratio (95% CI)Test for Interaction With HemisphereF1,51PF1,51PScz (n = 15)10.72.400.91 (0.73-1.13)1.78.1920.24.630.95 (0.76-1.19)0.71.4030.15.700.96 (0.80-1.15)0.12.735a3.05.090.83 (0.71-0.99)2.25.145b2.89.100.87 (0.74-1.02)0.04.8465.92.02†0.80 (0.67-0.96)0.27.61BPD (n = 15)10.16.690.95 (0.77-1.18)2.56.1220.56.461.09 (0.88-1.35)0.39.543<0.001>.991.01 (0.85-1.21)1.18.285a0.18.670.97 (0.83-1.13)0.76.395b0.22.640.96 (0.82-1.13)0.01.9261.70.200.89 (0.75-1.06)0.13.72MDD (n = 15)12.91.090.85 (0.69-1.06)5.33.02†2<0.001>.991.02 (0.82-1.26)2.06.1632.64.110.90 (0.75-1.07)5.78.02†5a2.66.110.89 (0.76-1.05)0.35.565b3.90.050.86 (0.73-1.01)0.81.3768.90.004‡0.78 (0.65-0.93)1.58.21*Scz indicates schizophrenia; BPD, bipolar disorder; and MDD, major depressive disorder.†Significant at the single-test significance level of 5%; not adjusted for multiple layerwise comparisons.‡Significant at the experiment-wise significance level of 5% (ie, adjusted for multiple layerwise comparisons).Glia and neurons in layer 6 of the anterior cingulate cortex. Glia are small, dark, and generally round, with no stained cytoplasm. Neurons are larger, have a nucleolus visible within the nucleus and Nissl-stained cytoplasm. C1 to C3, Control subject: male, aged 44 years. B1 to B3, Case with bipolar disorder: female, aged 48 years. S1 to S3, Case with schizophrenia: male, aged 44 years. D1 to D3, Case with major depressive disorder: female, aged 52 years. Fewer glial cells are present in major depressive disorder and schizophrenia. Although not qualitatively obvious, neurons are smaller in major depressive disorder (Nissl stain; bar, 12 µm).ANALYSIS OF NEURONAL SIZEDuring the model selection stage, the age of the patient was identified as a predictor of neuronal size (ttest using robust SEs: t59= −1.95, P= .05; estimated decrease in neuronal density per 10 years' survival, 4.7%; 95% CI, −0.1% to 9.2%). This finding is in keeping with previous literature.Layerwise comparisons of neuronal size between the 3 patient groups and the control group were adjusted for the effect of age (see Table 2for observed median neuronal sizes within categories defined by cortical layer and patient group). Tests for overall differences between patient groups and control group were undertaken (Table 5). These show that at the single-test 5% level neuronal size differed between the depressed patients and controls in layers 5b and 6. These comparisons do not remain significant after adjusting for multiple layerwise comparisons. However, the value for comparing depressed patients with controls in layer 6 of P= .01 is only slightly exceeding the adjusted significance level of P= .008 and is interpreted as mild evidence for a difference between these groups, taking into account the conservative nature of the Bonferroni procedure. In layer 6, the neuronal size was estimated to be reduced by 23% in depressed patients compared with controls (uncorrected 95% CI, 6%-37%) (Table 5).Table 5. Single 95% Confidence Intervals (CI) and tTests Based on Robust SEs for Comparing Neuronal Size Between Patient Groups and the Control Group (n = 15 per Group) (Comparisons Are Adjusted for Age at Death)*Patient GroupCortical LayerTest for Difference Between Patient Group and Control GroupEstimate of Effect, Estimated Ratio (95% CI)t59PScz (n = 15)1−0.47.640.97 (0.83-1.12)20.32.751.04 (0.83-1.3)30.77.441.09 (0.88-1.34)5a−1.3.200.89 (0.74-1.07)5b−0.84.400.92 (0.75-1.13)6−1.82.070.85 (0.71-1.02)BPD (n = 15)1−0.1.920.99 (0.81-1.21)20.74.461.06 (0.90-1.26)30.12.901.01 (0.81-1.27)5a−0.87.390.91 (0.75-1.12)5b−1.33.190.87 (0.71-1.07)6−1.91.060.80 (0.64-1.01)MDD (n = 15)1−1.37.180.91 (0.78-1.05)21.15.251.10 (0.94-1.28)3−0.88.380.92 (0.76-1.11)5a−0.95.350.90 (0.72-1.13)5b−2.05†0.84 (0.71-1.00)6−2.66.01†0.77 (0.63-0.94)*Scz indicates schizophrenia; BPD, bipolar disorder; and MDD, major depressive disorder.†Significant at the single-test significance level of 5%; not adjusted for multiple layerwise comparisons.COMMENTIn this investigation, we have found evidence for reductions in glial cell density and neuronal size in layer 6 of the ACC in subjects with MDD. The estimated sizes of these reductions are 22% and 23%, respectively (Table 4and Table 5). As glia have important metabolic influences on neuronsand contribute to synaptic functionand neurotransmission,the findings imply that abnormalities of glial function may undermine neuronal function and predispose to MDD.There have been 2 previous stereological investigations in MDD, and both support our finding of reduced glial cell density in MDD.The first study, that of Ongur and colleagues,found reduced glial cell density in the subgenual ACC of the same set of brains as examined in our investigation of supracallosal ACC. The second, by Rajkowska et al,found reduced glial cell density in the dorsolateral prefrontal cortex and the caudal orbitofrontal cortex. As in our investigation, these latter changes were most prominent in the deeper cortical layers and were accompanied by reduced neuronal size. However, there are some differences between the 3 investigations. First, Rajkowska et alfound decreased neuronal density in the prefrontal cortex in MDD, while our study of the ACC and that of Ongur et aldid not, suggesting a possible region-specific effect. Second, Ongur et alfound no reduction in neuronal size in MDD. This difference may relate to the lack of laminar specific data in their study and to the fact that subgenual rather supracallosal ACC was assessed. Ongur et alalso found reduced glial cell density to be most prominent in familial MDD and BPD groups, while we found no evidence for any changes in microscopic neuroanatomy in BPD, and we refrained from smaller subdivisions of the patient groups according to family history. Third, the absolute values for neuronal density differ between the 3 studies. The reasons for these differences are likely to relate to processing differences between our study, which used paraffin-embedded material, and the other studies, which used cryosections from fixed tissueand celloidin sections,respectively.Our investigation found a trend for an estimated reduced glial cell density of 20% in layer 6 in schizophrenia (Table 4). While contrasting with some,it is in keeping with previous work showing glial cell reductions in the orbitofrontal,anterior cingulate,and primary motor cortices.These reductions have been moderate,with evidence that schizophrenic subjects with affective symptoms are more likely to show reduced glial cell density.Reductions in the levels of glial fibrillary acidic protein,which labels astrocytes, and myelin basic protein,which labels oligodendroglia in the anterior frontal cortex in schizophrenia and MDD, have also been demonstrated; these findings point to the potential cellular basis of the glial cell deficit described in our study.We found no change in neuronal density in the ACC in schizophrenia (Table 3). This contrasts with the studies of Benes and colleagues,which found reduced density of small neurons in layers 2 through 6,and reduced density of all neurons in layer 5 of the ACCin schizophrenia. These contrasting results may be caused by differences in the region within the ACC that was assessed; for example, Benes and colleaguesmay have examined perigenual rather the supracallosal ACC as assessed in our investigation. Additionally, the smaller size of the sampled fields in our investigation may have affected our sensitivity to detect changes in the density of the larger neurons. However, this would not explain the difference in the results regarding smaller neurons; we used a 100-times oil-immersion lens that maximized our ability to distinguish glia from small neurons. Similar discrepancies have also been reported regarding neuronal density in the prefrontal cortex.Neuronal size has previously been reported to be reduced in the prefrontal cortex in schizophrenia,but we found no evidence for this reduction in our study (Table 5).In our investigation, tissue was available from 1 hemisphere of each subject; consequently, we were unable to assess true laterality effects within our subjects. We did find, however, that neuronal and glial cell densities were increased in the left hemispheres compared with the right hemispheres (Table 3). This finding may reflect genetically determined structural asymmetries in the normal brain,such as may be responsible for the recently reported left-lateralized increase in the ACC fissurization in normal subjects.We also found a trend for a dependence on hemisphere of the changes in glial cell density in layers 1 and 3 between controls and MDD. This finding is consistent with left-lateralized changes reported in the ACC in MDD in functional neuroimaging investigations.There are several methodological advantages of this study. These include the pragmatic application of stereologically derived methods, the assessment of all cortical layers, and the presence of 3 psychiatric groups with good sample size, clinical details, and careful pathological characterization. There are a number of potential confounding factors. For example, reduced glial cell density or neuronal size could be secondary to pharmacological treatments or group differences in tissue pH. In our analysis, we found that increasing tissue pH was predictive of increasing glial density. Consequently, we corrected for this potential confounding factor in our analysis. We found no evidence that pharmacological treatments (neuroleptics, antidepressants, or mood stabilizers) had predictive effects on cell density or neuronal sizes. Indeed, the literature that is available indicates that pharmacological treatments increase rather than decrease their densities. For example, a recent investigation suggests that chronic exposure to neuroleptics increases glial density in the prefrontal cortex.There is also preliminary in vitro evidence that antidepressants activate microglia and cause proliferation of oligodendroglial cells,and that lithium treatment is associated with gliosis.Together, these findings suggest that our finding of reduced glial cell density is unlikely to be a consequence of pharmacological treatments or group differences in tissue pH.There are at present no clear biological mechanisms to explain our findings. However, there may be a clue in the shared neuroanatomy in schizophrenia and MDD. Reduced hippocampal and cortical volumes,neuronal size,and dendritic spine densityare features of both schizophrenia and MDD, and we have now shown reduced glial cell density in both disorders. These similarities suggest that there may be a shared pathophysiological mechanism. One intriguing possibility is stress-related, glucocorticoid-mediated toxic effects.The consequences of elevated levels of glucocorticoidsare consistent with both the macroscopic and microscopic neuroanatomy described in MDDand schizophrenia.Elevated levels of glucocorticoids are known to reduce astrocyte activity and function,and reduced levels of the messenger RNA for the glucocorticoid receptor are reported in the frontal cortex and hippocampus of subjects with MDD and schizophrenia.Consequently, glucocorticoids may act directly on neurons, or indirectly through glia to undermine neuronal and cortical function in both disorders.However, although the etiology of the glial cell loss is not clear, the consequences of such loss are potentially far-reaching because of the crucial roles of glial cells in neurotransmission and synaptic function,buffering neurochemical messengers,and providing metabolic support for neurons.Furthermore, glial cells express receptorsand transportersthat are implicated in the monoaminergic neurotransmission abnormalities of MDDand schizophrenia.With regard to laminar specificity of cellular pathology, we found that glial cell density and neuronal size were significantly reduced only in layer.The deeper cortical layers receive noradrenergic afferents from the locus ceruleus,which is implicated in the pathology of MDD,and they also project via glutamatergic pathways to subcortical structures involved in the control of motor functions.Therefore, our findings of altered layer 6 cytoarchitecture are consistent with the clinicopathological picture of MDD.The glial cells sampled in this investigation do not represent a homogeneous population. They are composed of distinct populations of oligodendrocytes, microglia, and astrocytes, whose crucial role in cortical function is being actively reevaluated.From our current data, we cannot identify which of these populations are particularly affected. Future work will be directed at identifying which of the main glial populations is deficient and whether this deficiency is primary or secondary to the disease process.JTCoyleRSchwarczMind glue: implications of glial cell biology for psychiatry.Arch Gen Psychiatry.2000;57:90-93.FWPfiegerBABarresNew views on synapse-glia interactions.Curr Opin Neurobiol.1996;6:615-621.FWPfriegerBABarresSynaptic efficacy enhanced by glial cells in vitro.Science.1997;277:1684-1687.AAraqueVParpuraRPSanzgiriPGHaydonTripartite synapses: glia, the unacknowledged partner.Trends Neurosci.1999;22:208-215.AVerkhratskyRKOrkandHKettenmannGlial calcium: homeostasis and signaling function.Physiol Rev.1998;78:99-141.SMennerickCFZorumskiGlial contributions to excitatory neurotransmission in cultured hippocampal cells.Nature.1994;368:59-62.PJMagistrettiLPellerinDLRothmanRGShulmanEnergy on demand.Science.1999;283:496-497.JAColesNJAbbotSignalling from neurones to glial cells in invertebrates.Trends Neurosci.1996;19:358-362.MTsacopoulosPJMagistrettiMetabolic coupling between glia and neurons.J Neurosci.1996;16:877-885.PRakicSpecification of the cerebral cortical areas.Science.1988;241:170-176.LDSelemonMSLidowPSGoldman-RakicIncreased volume and glial density in primate prefrontal cortex associated with chronic antipsychotic drug exposure.Biol Psychiatry.1999;46:161-172.GRajkowskaJJMiguel-HidalgoJWeiGDilleySDPittmanHYMeltzerJCOverholserBLRothCAStockmeierMorphometric evidence for neuronal and glial prefrontal pathology in major depression.Biol Psychiatry.1999;45:1085-1098.DOngurWCDrevetsJLPriceGlial reduction in the subgenual prefrontal cortex in mood disorders.Proc Natl Acad Sci U S A.1998;95:13290-13295.GRajkowskaJJWeiJJMiguel-HidalgoCAStockmeierGlial and neuronal pathology in rostral orbitofrontal cortex in schizophrenic postmortem brain [abstract].Schizophr Res.1999;36:84.PJHarrisonThe neuropathology of schizophrenia: a critical review of the data and their interpretation.Brain.1999;122:593-624.DCSteffensKKrishnanStructural neuroimaging and mood disorders: recent findings, implications for classification and future directions.Biol Psychiatry.1998;43:705-712.RWMcCarleyCGWibleMFruminYHirayasuJLLevittAFischerMEShentonMRI anatomy of schizophrenia.Biol Psychiatry.1999;45:1099-1119.DEbertKPEbmeierThe role of the cingulate gyrus in depression: from functional anatomy to neurochemistry.Biol Psychiatry.1996;39:1044-1050.DCSteffensRRKrishnanStructural neuroimaging and mood disorders: recent findings, implications for classification, and future directions.Biol Psychiatry.1998;43:705-712.SMLawrieSSAbukmeilBrain abnormality in schizophrenia: a systematic and quantitative review of volumetric magnetic resonance imaging studies.Br J Psychiatry.1998;172:110-120.MARogersJLBradshawCPantelisJGPhillipsFrontostriatal deficits in unipolar major depression.Brain Res Bull.1998;47:297-310.CJBenchRSFrackowiakRJDolanChanges in regional cerebral blood flow on recovery from depression.Psychol Med.1995;25:247-251.WCDrevetsJLPriceJRSimpsonRDToddTReichMVannierMERaichleSubgenual prefrontal cortex abnormalities in mood disorders.Nature.1997;386:824-827.YHirayasuMEShentonDSalisburyJSKwonCGWibleIAFischerDYurgelun-ToddCZarateRKikinisFAJoleszMDMcCarleySubgenual cingulate cortex volume in first-episode psychosis.Am J Psychiatry.1999;156:1091-1093.NCAndreasenDSO'LearyMFlaumPNopoulosGLWatkinsLLBales PontoRDHichwaHypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients.Lancet.1997;349:1730-1734.RJDolanPFletcherCDFrithKJFristonRSFrackowiakPMGrasbyDopaminergic modulation of impaired cogntive activation in the anterior cingulate cortex in schizophrenia.Nature.1995;378:180-182.MHHaznedarMSBuchsbaumCLuuEAHazlettBVSiegelJLohrJWuRJHaierWEBunneyDecreased anterior cingulate gyrus metabolic rate in schizophrenia.Am J Psychiatry.1997;154:682-684.CSCarterMMintunTNicholsJDCohenAnterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [15 O] H2O PET study during single-trial Stroop task performance.Am J Psychiatry.1997;154:1670-1675.MMesulamThe functional anatomy and hemispheric specialisation for directed attention.Trends Neurosci.1983;6:384-387.MIPosnerSEPetersenThe attention system of the human brain.Annu Rev Neurosci.1990;13:25-42.PFLiddleKJFristonCDFrithSRHirschTJonesRSFrackowiakPatterns of cerebral blood flow in schizophrenia.Br J Psychiatry.1992;160:179-186.GRajkowskaLDSelemonPSGoldman-RakicNeuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and huntington disease.Arch Gen Psychiatry.1998;55:215-224.LDSelemonGRajkowskaPSGoldman-RakicAbnormally high neuronal density in the schizophrenic cortex: a morphometric analysis of prefrontal area 9 and occipital area 17.Arch Gen Psychiatry.1995;52:805-818.GRajkowska-MarkowJJMiguel-HidalgoJWeiCAStockmeirReductions in glia distinguish orbitofrontal region from dorsolateral prefrontal cortex in schizophrenia [abstract].Abstracts Soc Neurosci.1999;25:818.FMBenesJMcSparrenEDBirdJPSanGiovanniSLVincentDeficits in small interneurons in prefrontal and cingulate cortices in schizophrenic and schizoaffective patiants.Arch Gen Psychiatry.1991;48:996-1001.FMBenesJDavidsonEDBirdQuantitative cytoarchitectural studies of the cerebral cortex of schizophrenics.Arch Gen Psychiatry.1986;43:31-35.EFTorreyMWWebsterMKnableNJohnstonRHYolkenThe Stanley Foundation brain collection and Neuropathology Consortium.Schizophr Res.2000;44:151-155.American Psychiatric AssociationDiagnostic and Statistical Manual of Mental Disorders, Fourth Edition.Washington, DC: American Psychiatric Association; 1994.BAVogtStructural organisation of cingulate cortex: areas, neurons, and somatodendritic transmitter receptors.In: Vogt BA, Gabriel M, eds. Neurobiology of the Cingulate Cortex and Limbic Thalmus: A Comprehensive Handbook. Boston, Mass: Birkhauser; 1993.Not AvailableImage-Pro Plus[computer program]. Version 4.0 for Windows.Baltimore, Md: Media Cybernetics; 1998.HJGundersenPBaggerTFBendtsenSMEvansLKorboNMarcussenAMollerKNielsenJRNyengoaldBPakkenbergFBSorensenAVesterbyMJWestThe new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis.APMIS.1988;96:857-881.HJGundersenThe nucleator.J Microsc.1988;151:3-21.RWPaynePWLanePGDigbySAHardingPKLeechGWMorganADToddRThompsonGTWilsonSJWelhamRPWhiteGenstat 5, Release 3, Reference Manual.Oxford, England: Oxford University Press; 1993.RSchallEstimation in generalized linear models with random effects.Biometrika.1991;78:719-727.PMcCullaghJANelderGeneralised Linear Models.2nd ed. London, England: Chapman & Hall; 1989.RDTerryRDeTeresaLAHansenNeocortical cell counts in normal human adult aging.Ann Neurol.1987;21:530-539.GRajkowskaJJWeiJJMiguel-HidalgoCAStockmeierGlial and neuronal pathology in rostral orbitofrontal cortex in schizophrenic postmortem brain [abstract].Schizophr Res.1999;36:84.NJohnston-WilsonCDSimsJPHofmannLAndersonADShoreEFTorreyRYolkenDisease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder and major depressive disorder.Mol Psychiatry.2000;5:142-149.WGHonerPFalkaiCChenVArangoJJMannAJDworkSynaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness.Neuroscience.1999;91:1247-1255.SAkbarianJJKimSGPotkinJOHagmanATafazzoliWEBunneyEGJonesGene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics.Arch Gen Psychiatry.1995;52:258-266.TJCrowJBallSRBloomRBrownCJBrutonNColterCDFrithECJohnstoneDGOwensGWRobertsSchizophrenia as an anomaly of development of cerebral asymmetry: a postmortem study and a proposal concerning the genetic basis of the disease.Arch Gen Psychiatry.1989;46:1145-1150.AIdeCDolezalMFernandezELabbeRMandujanoSMontesPSeguraGVerschaePYarmuchFAboitizHemispheric differences in variability of fissural patterns in parasylvian and cingulate regions of human brains.J Comp Neurol.1999;410:235-242.IKGrundtHNylandActivation of cultured glial cells by amitryptilene and platelet activating factor.Toxicol In Vitro.1994;8:1015-1020.ERochaRRodnightChronic administration of lithium chloride increases immunodetectable glial fibrillary acidic protein in the rat hippocampus.J Neurochem.1994;63:1582-1584.ERochaMAchavalPSantosPRodnightLithium treatment causes gliosis and modifies the morphology of hippocampal astrocytes in rats.Neuroreport.1998;9:3971-3974.GRosoklijaGToomayanSPEllisJKeilpJJMannNLatovAPHaysAJDworkStructural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: preliminary findings.Arch Gen Psychiatry.2000;57:349-356.DCotterCMParianteIPEverallGlial cell abnormalities in major psychiatric disorders: the evidence and implications.Brain Res Bull.In press.ESBrownAJRushBSMcEwenHippocampal remodelling and damage by corticosteroids: implications for mood disorders.Neuropsychopharmacology.1999;21:474-484.RSapolskyGlucocorticoids, stress and exacerbation of excitotoxic neuron death.Semin Neurosci.1994;6:323-331.BSMcEwenPossible mechanisms for atrophy of the human hippocampus.Mol Psychiatry.1997;2:255-262.MNStarkmanSSGebarskiSBerentDESchteingartHippocampal formation volume, memory dysfunction and cortisol levels in patients with Cushing's syndrome.Biol Psychiatry.1992;32:756-765.KLCrossinMHTaiLAKrushelVPMauroGMEdelmanGlucocorticoid receptor pathways are involved in the inhibition of astrocyte proliferation.Proc Natl Acad Sci U S A.1997;94:2687-2692.MJWebsterJO'GradyCOrthmannCWeickertDecreased glucocorticoid receptor mRNA levels in individuals with depression, bipolar disorder and schizophrenia [abstract].Schizophr Res.2000;41:111.JTPorterKDMcCarthyAstrocytic neurotransmitter receptors in situ and in vivo.Prog Neurobiol.1997;51:439-455.VArangoMDUnderwoodPJMcDevittAVGubbiJJMannLocalised alterations in pre- and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims.Brain Res.1995;688:121-133.GSedvallLFardeChemical brain anatomy in schizophrenia.Lancet.1995;346:743-749.DALewisJHMorrisonNoradrenergic innervation of monkey prefrontal cortex: a dopamine-hydroxylase immunohistochemical study.J Comp Neurol.1989;282:317-330.GAOrdwayPSWiddowsonKSSmithAHalarisAgonist binding to 2-adrenoceptors is elevated in the locus coeruleus from victims of suicide.J Neurochem.1994;63:617-624.LDSelemonPSGoldman-RakicLongitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey.J Neurosci.1985;5:776-794.Accepted for publication December 21, 2000.Funded by a Clinician Scientist Fellowship from the Medical Research Council, London, England (Dr Cotter), and a project award from the Theodore and Vada Stanley Foundation, Bethesda, Md. Postmortem brains were donated by the Stanley Foundation Brain Bank Consortium, Bethesda, courtesy of Llewellyn B. Bigelow, MD, Juraj Cervenak, MD, Mary M. Herman, MD, Thomas M. Hyde, MD, Joel Kleinman, MD, Jose D. Paltan, MD, Robert M. Post, MD, E. Fuller Torrey, MD, Michael Knable, MD, Maree J. Webster, MD, and Robert Yolken, MD.Corresponding author: David R. Cotter, MRCPsych, PhD, Department of Psychological Medicine and Neuropathology, Institute of Psychiatry, DeCrespigny Park, London SE5 8AF, England (e-mail: david.cotter@iop.kcl.ac.uk).

Journal

JAMA PsychiatryAmerican Medical Association

Published: Jun 1, 2001

References