Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Reassembly of the Corneal Epithelial Adhesion Structures Following Human Epikeratoplasty

Reassembly of the Corneal Epithelial Adhesion Structures Following Human Epikeratoplasty Abstract • Ten epikeratoplasty lenticules removed after surgery were obtained for immunohistochemical and electron microscopic analysis to determine the pattern of re-formation of corneal epithelial adhesion structures. Antibodies to laminin and type VII collagen were used to determine the presence of basement membrane and anchoring fibrils, respectively. Electron micrographs were used to determine the percentage of basal cell membrane occupied by hemidesmosomes, the area of basal lamina per 100 μg of basal cell membrane, and the average maximum depth of penetration of anchoring fibrils into the stroma. Nine normal corneas served as controls. Compared with normal corneas (24.5% of basal cell membrane occupied by hemidesmosomes; 32.0 μm2 basal lamina per 100 μm of basal cell membrane), lenticules removed for optical reasons had near-normal hemidemosomes as early as 10 weeks following surgery (mean, 20.3%). The area of basement membrane was reduced (16 μm2 basal lamina per 100 μm of basement cell membrane). During the course of 2 to 3 years, irregularities and duplications of the basement membrane were noted. Compared with normal corneas, the two lenticules removed for persistent defects had a marked reduction of hemidesmosomes and basement membrane present under epithelium at 3 and 4 weeks (9.6% of basal cell membrane occupied by hemidesmosomes and 13.6 μm2 basal lamina per 100 μm of basal cell membrane, and 5.4% of basal cell membrane occupied by hemidesmosomes and 7.2 μm2 basal lamina per 100 μm of basal cell membrane, respectively). References 1. Gipson IK, Grill SM, Spurr SJ, Brennan SJ. Hemidesmosome formation in vitro . J Cell Biol . 1983;97:849-857.Crossref 2. Westgate GE, Weaver AC, Couchman JR. Bullous pemphigoid antigen localization suggests an intracellular association with hemidesmosomes . J Invest Dermatol . 1985;84:218-224.Crossref 3. Mutasim DF, Takahashi Y, Labib RS, Anhalt GJ, Patel HP, Diaz LA. A pool of bullous pemphigoid antigen(s) is intracellular and associated with the basal cell cytoskeleton-hemidesmosome complex . J Invest Dermatol . 1985;84:47-53.Crossref 4. Regnier M, Vaigot P, Michel S, Prunieras M. Localization of bullous pemphigoid antigen (BPA) in isolated keratinocytes . J Invest Dermatol . 1985;85:187-190.Crossref 5. Stepp MA, Spurr-Michaud S, Tisdale A, Elwell J, Gipson IK. α6β4 Integrin heterodimer is a component of hemidesmosomes . Proc Natl Acad Sci U S A . 1990;87:8970-8974.Crossref 6. Gipson IK, Spurr-Michaud SJ, Tisdale AS. Anchoring fibrils form a complex network in human and rabbit cornea . Invest Ophthalmol Vis Sci . 1987;28:212-220. 7. Gipson IK, Spurr-Michaud SJ, Tisdale AS. Hemidesmosomes and anchoring fibril collagen appear synchronously during development and wound healing . Dev Biol . 1988;126:253-262.Crossref 8. Gipson IK, Spurr-Michaud S, Tisdale A, Keough M. Reassembly of the anchoring structures of the corneal epithelium during wound repair in the rabbit . Invest Ophthalmol Vis Sci . 1989;30:425-434. 9. Azar DT, Spurr-Michaud SJ, Tisdale AS, Gipson IK. Decreased penetration of anchoring fibrils into the diabetic stroma: a morphometric analysis . Arch Ophthalmol . 1989;107:1520-1523.Crossref 10. Azar DT, Gipson IK. Repair of the corneal epithelial adhesion structures following keratectomy wounds in diabetic rabbits . Acta Ophthalmol . 1989;67( (suppl 192) ):72-79.Crossref 11. Khodadoust AA, Silverstein AM, Kenyon KR, Dowling JE. Adhesion of regenerating corneal epithelium: the role of basement membrane . Am J Ophthalmol . 1968;65:339-348. 12. Alvarado J, Murphy C, Juster R. Age-related changes in the basement membrane of the human corneal epithelium . Invest Ophthalmol Vis Sci . 1983;24:1015-1028. 13. Matsubara M, Zieske J, Fini ME. Mechanism of basement membrane dissolution preceding corneal ulceration. Invest Ophthalmol Vis Sci. In press. 14. Rao GN, Ganti S, Aquavella JV. Specular microscopy of corneal epithelium after epikeratophakia . Am J Ophthalmol . 1987;103:392-396. 15. Price FW Jr, Binder PS. Scarring of a recipient cornea following epikeratoplasty . Arch Ophthalmol . 1987;105:1556-1560.Crossref 16. McDonald MB, Kaufman HE, Aquavella JV, et al. The nationwide study of epikeratophakia for myopia . Am J Ophthalmol . 1987;103:375-383. 17. Martel J, Martel J. Intraepikeratophakia . Ann Ophthalmol . 1987;19:287-290, 292. 18. Wilson DR, Keeney AH. Corrective measures for myopia . Surv Ophthalmol . 1990;34:294-304.Crossref 19. Frantz JM, McDonald MB, Kaufman HE. Results of penetrating keratoplasty after epikeratophakia for keratoconus in the nationwide study . Ophthalmology . 1989;96:1151-1159.Crossref 20. Frangieh GT, Kenyon KR, Wagoner MD, Hanninen L, John T, Steinert RF. Epithelial abnormalities and sterile ulceration of epikeratoplasty grafts . Ophthalmology . 1988;95:213-227.Crossref 21. Binder PS, Zavala EY. Why do some epikeratoplasties fail? Arch Ophthalmol . 1987;105:63-69.Crossref 22. Lass JH, Stocker EG, Fritz ME, Collie DM. Epikeratoplasty: the surgical correction of aphakia, myopia, and keratoconus . Ophthalmology . 1987;94:912-925.Crossref 23. Yamaguchi T, Koenig SB, Kimura T, Werblin TP, McDonald MB, Kaufman HE. Histological study of epikeratophakia in primates . Ophthalmic Surg . 1984;15:230-235. 24. Pokorny KS, Kenyon KR, Swinger C, et al. Histopathology of human keratorefractive lenticules . Cornea . 1990;9:223-233.Crossref 25. Tamaki K, Yamaguchi T, McDonald MB, Kaufman HE. Histological study of epikeratophakia tissue lenses for myopia removed from two patients . Ophthalmology . 1986;93:1502-1508.Crossref 26. Arffa RC, Ebato B. Attachment of cultured corneal epithelial sheets to epikeratophakia lenticules . CLAO J . 1989;15:74-77. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Ophthalmology American Medical Association

Reassembly of the Corneal Epithelial Adhesion Structures Following Human Epikeratoplasty

Loading next page...
 
/lp/american-medical-association/reassembly-of-the-corneal-epithelial-adhesion-structures-following-0g0tA2ZtU0
Publisher
American Medical Association
Copyright
Copyright © 1991 American Medical Association. All Rights Reserved.
ISSN
0003-9950
eISSN
1538-3687
DOI
10.1001/archopht.1991.01080090105032
Publisher site
See Article on Publisher Site

Abstract

Abstract • Ten epikeratoplasty lenticules removed after surgery were obtained for immunohistochemical and electron microscopic analysis to determine the pattern of re-formation of corneal epithelial adhesion structures. Antibodies to laminin and type VII collagen were used to determine the presence of basement membrane and anchoring fibrils, respectively. Electron micrographs were used to determine the percentage of basal cell membrane occupied by hemidesmosomes, the area of basal lamina per 100 μg of basal cell membrane, and the average maximum depth of penetration of anchoring fibrils into the stroma. Nine normal corneas served as controls. Compared with normal corneas (24.5% of basal cell membrane occupied by hemidesmosomes; 32.0 μm2 basal lamina per 100 μm of basal cell membrane), lenticules removed for optical reasons had near-normal hemidemosomes as early as 10 weeks following surgery (mean, 20.3%). The area of basement membrane was reduced (16 μm2 basal lamina per 100 μm of basement cell membrane). During the course of 2 to 3 years, irregularities and duplications of the basement membrane were noted. Compared with normal corneas, the two lenticules removed for persistent defects had a marked reduction of hemidesmosomes and basement membrane present under epithelium at 3 and 4 weeks (9.6% of basal cell membrane occupied by hemidesmosomes and 13.6 μm2 basal lamina per 100 μm of basal cell membrane, and 5.4% of basal cell membrane occupied by hemidesmosomes and 7.2 μm2 basal lamina per 100 μm of basal cell membrane, respectively). References 1. Gipson IK, Grill SM, Spurr SJ, Brennan SJ. Hemidesmosome formation in vitro . J Cell Biol . 1983;97:849-857.Crossref 2. Westgate GE, Weaver AC, Couchman JR. Bullous pemphigoid antigen localization suggests an intracellular association with hemidesmosomes . J Invest Dermatol . 1985;84:218-224.Crossref 3. Mutasim DF, Takahashi Y, Labib RS, Anhalt GJ, Patel HP, Diaz LA. A pool of bullous pemphigoid antigen(s) is intracellular and associated with the basal cell cytoskeleton-hemidesmosome complex . J Invest Dermatol . 1985;84:47-53.Crossref 4. Regnier M, Vaigot P, Michel S, Prunieras M. Localization of bullous pemphigoid antigen (BPA) in isolated keratinocytes . J Invest Dermatol . 1985;85:187-190.Crossref 5. Stepp MA, Spurr-Michaud S, Tisdale A, Elwell J, Gipson IK. α6β4 Integrin heterodimer is a component of hemidesmosomes . Proc Natl Acad Sci U S A . 1990;87:8970-8974.Crossref 6. Gipson IK, Spurr-Michaud SJ, Tisdale AS. Anchoring fibrils form a complex network in human and rabbit cornea . Invest Ophthalmol Vis Sci . 1987;28:212-220. 7. Gipson IK, Spurr-Michaud SJ, Tisdale AS. Hemidesmosomes and anchoring fibril collagen appear synchronously during development and wound healing . Dev Biol . 1988;126:253-262.Crossref 8. Gipson IK, Spurr-Michaud S, Tisdale A, Keough M. Reassembly of the anchoring structures of the corneal epithelium during wound repair in the rabbit . Invest Ophthalmol Vis Sci . 1989;30:425-434. 9. Azar DT, Spurr-Michaud SJ, Tisdale AS, Gipson IK. Decreased penetration of anchoring fibrils into the diabetic stroma: a morphometric analysis . Arch Ophthalmol . 1989;107:1520-1523.Crossref 10. Azar DT, Gipson IK. Repair of the corneal epithelial adhesion structures following keratectomy wounds in diabetic rabbits . Acta Ophthalmol . 1989;67( (suppl 192) ):72-79.Crossref 11. Khodadoust AA, Silverstein AM, Kenyon KR, Dowling JE. Adhesion of regenerating corneal epithelium: the role of basement membrane . Am J Ophthalmol . 1968;65:339-348. 12. Alvarado J, Murphy C, Juster R. Age-related changes in the basement membrane of the human corneal epithelium . Invest Ophthalmol Vis Sci . 1983;24:1015-1028. 13. Matsubara M, Zieske J, Fini ME. Mechanism of basement membrane dissolution preceding corneal ulceration. Invest Ophthalmol Vis Sci. In press. 14. Rao GN, Ganti S, Aquavella JV. Specular microscopy of corneal epithelium after epikeratophakia . Am J Ophthalmol . 1987;103:392-396. 15. Price FW Jr, Binder PS. Scarring of a recipient cornea following epikeratoplasty . Arch Ophthalmol . 1987;105:1556-1560.Crossref 16. McDonald MB, Kaufman HE, Aquavella JV, et al. The nationwide study of epikeratophakia for myopia . Am J Ophthalmol . 1987;103:375-383. 17. Martel J, Martel J. Intraepikeratophakia . Ann Ophthalmol . 1987;19:287-290, 292. 18. Wilson DR, Keeney AH. Corrective measures for myopia . Surv Ophthalmol . 1990;34:294-304.Crossref 19. Frantz JM, McDonald MB, Kaufman HE. Results of penetrating keratoplasty after epikeratophakia for keratoconus in the nationwide study . Ophthalmology . 1989;96:1151-1159.Crossref 20. Frangieh GT, Kenyon KR, Wagoner MD, Hanninen L, John T, Steinert RF. Epithelial abnormalities and sterile ulceration of epikeratoplasty grafts . Ophthalmology . 1988;95:213-227.Crossref 21. Binder PS, Zavala EY. Why do some epikeratoplasties fail? Arch Ophthalmol . 1987;105:63-69.Crossref 22. Lass JH, Stocker EG, Fritz ME, Collie DM. Epikeratoplasty: the surgical correction of aphakia, myopia, and keratoconus . Ophthalmology . 1987;94:912-925.Crossref 23. Yamaguchi T, Koenig SB, Kimura T, Werblin TP, McDonald MB, Kaufman HE. Histological study of epikeratophakia in primates . Ophthalmic Surg . 1984;15:230-235. 24. Pokorny KS, Kenyon KR, Swinger C, et al. Histopathology of human keratorefractive lenticules . Cornea . 1990;9:223-233.Crossref 25. Tamaki K, Yamaguchi T, McDonald MB, Kaufman HE. Histological study of epikeratophakia tissue lenses for myopia removed from two patients . Ophthalmology . 1986;93:1502-1508.Crossref 26. Arffa RC, Ebato B. Attachment of cultured corneal epithelial sheets to epikeratophakia lenticules . CLAO J . 1989;15:74-77.

Journal

Archives of OphthalmologyAmerican Medical Association

Published: Sep 1, 1991

References