Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Postnatal Development of Vision in a Subhuman Primate (Macaca Mulatta): A Multidisciplinary Study

Postnatal Development of Vision in a Subhuman Primate (Macaca Mulatta): A Multidisciplinary Study Abstract Introduction In recent years, many theories and a vast amount of empirical data concerning vision have come from various scientific disciplines ranging from electron microscopy, photochemistry, physiology, and ophthalmology to experimental psychology. However, this vast amount of information on vision has been obtained almost exclusively from research on adult subjects. The experimental literature on the postnatal structural and functional development of the visual system in newborn primates is still very fragmentary even though it is generally accepted that high visual acuity must play a basic role in the development of visually-guided behavior of man and the diurnal subhuman primates. Since a number of visual reflexes can be elicited by light at birth or shortly after in newborn primate infants, it is commonly accepted that gross visual sensitivity to light is present at birth. However, in view of the methodologic difficulties in testing neonatal infants and the consequent lack of experimental References 1. Gorman, J. J.; Cogan, D. G.; and Gellis, S. S.: Apparatus for Grading Visual Acuity of Infants on Basis of Optokinetic Nystagmus , Pediatrics , 19:1,088-1,092, 1957. 2. Fantz, R. L.; Ordy, J. M.; and Udelf, M. S.: Maturation of Pattern Vision in Infants During First Six Months , J Comp Physiol Psychol 55:907-917, 1962.Crossref 3. Dayton, G. O., Jr., et al: Developmental Study of Coordinated Eye Movements in Human Infant , Arch Ophthal 71:865-870, 1964.Crossref 4. Ordy, J. M.; Massopust, L. C., Jr.; and Wolin, L. R.: Postnatal Development of Retina, Electroretinogram, and Acuity in Rhesus Monkey , Exp Neurol 5:364-382, 1962.Crossref 5. Ordy, J. M., et al: Visual Acuity in Newborn Primate Infants , Proc Soc Exp Biol Med, 1964 , 115:677-680, 1964.Crossref 6. Weinstein, B., and Grether, W. F.: Comparison of Visual Acuity in Rhesus Monkey and Man , J Comp Physiol Psychol 30:187-195, 1940.Crossref 7. Weymouth, F. W., and Hirsh, M.: Relative Growth of Eye , Amer J Ophthal 27:317-328, 1950. 8. Dayton, G. O., Jr., et al: Developmental Study of Coordinated Eye Movements in Human Infant , Arch Ophthal 71:871-875, 1964.Crossref 9. Zetterstroem, B.: Studies on Postnatal Development of Electroretinogram in Newborn Infants, Eye Clinic , Karolinska Sjukhuset, Tryckeri AB Thule, Stockholm, 1956. 10. Horsten, G. P. M., and Winkelman, J. E.: Development of ERG in Relation to Histological Differentiation of Retina in Man and Animals , Arch Ophthal 63:232-242, 1960.Crossref 11. Kolmer, W.: "Entwicklung des Auges," XIX in W. v. Moellendorff (ed.), Handbuch der Mikroskopischen Anatomie des Menschen: Haut und Sinnesorgane , Berlin: Verlag von Julius Springer, 1936. 12. Mann, I.: Development of Human Eye , New York: Grune & Stratton, Inc., 1950. 13. Barber, A. N.: Embryology of Human Eye , St. Louis: C. V. Mosby Co., 1955. 14. Duke-Elder, S., and Cook, C.: System of Ophthalmology: III. Normal and Abnormal Development , St. Louis: C. V. Mosby Co., 1963, pp 291-313 15. Polyak, S.: Vertebrate Visual System , Chicago: University of Chicago Press, 1957. 16. Collins, R. L.: Photographic Elimination of Transiants Proc Soc Exp Biol Med, (PET) , 117:724-726, 1964.Crossref 17. David, G. B.; Mallion, K. B.; and Brown, A. W.: Method of Silvering "Golgi Apparatus" (Nissl Network) in Paraffin Sections of Central Nervous System of Vertebrates , Quart J Micr Sci 101:207-221, 1960. 18. Freeman, J., and Spurlock, B.: New Epoxy Embedment for Electron Microscopy , J Cell Biol 13:437-443, 1962.Crossref 19. Millonig, G.: Modified Procedure for Lead Staining of Thin Section , J Biophys Biochem Cytol 11:736-739, 1961.Crossref 20. Collins, R. L., et al: Reliability of Electroretinogram Latencies in Rhesus Monkey , Anat Rec 148:272, 1964.Crossref 21. Slataper, F. J.: Age Norms of Refraction and Vision , Arch Ophthal 43:455-481, 1950. 22. Gesell, A.; Ilg, I.; and Bullis, G.: Vision: Its Development in Infant and Child , New York: P. B. Hoeber, 1949. 23. Walls, G. L.: Vertebrate Eye , Bloomfield Hills, Mich: Cranbrook Press, 1942. 24. Zimmerman, R. R.: Analysis of Discrimination Learning Capacities in Infant Rhesus Monkey , J Comp Physiol Psychol 54:1-10, 1961.Crossref 25. Smelser, G. K.: Structure of Eye , New York: Academic Press, 1961. 26. Zetterstroem, B.: Flicker Electroretinography in Newborn Infants , Acta Ophthal 33:157-166, 1955.Crossref 27. Horsten, G. P. M., and Winkelman, J. E.: Electrical Activity of Retina in Relation to Histological Differentiation in Infants Born Prematurely and at Full-term , Vision Res 2:269-276, 1962.Crossref 28. Cohen, A. I.: Vertebrate Retinal Cells and Their Organization , Biol Rev 38:427-459, 1963.Crossref 29. Dartnall, H. J. A., and Tansley, K.: Physiology of Vision: Retinal Structure and Visual Pigments , Ann Rev Physiol 25:433-458, 1963.Crossref 30. Tokuyasu, G., and Yamada, E.: Fine Structure of Retina Studied With Electron Microscope: IV. Morphogenesis of Outer Segments of Retinal Rods , J Biophys Biochem Cytol 6:225-230, 1959.Crossref 31. Bonting, S. L.; Caravaggio, L. L.; and Gouras, P.: Rhodopsin Cycle in Developing Vertebrate Retina: I. Relation of Rhodopsin Content, Electroretinogram and Rod Structure in Rat , Exp Eye Res 1:14-24, 1961.Crossref 32. Himwich, W. A.: Biochemical and Neun physiological Development of Brain in Neonata Period , Int Rev Neurobiol 4:117-158, 1962. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Ophthalmology American Medical Association

Postnatal Development of Vision in a Subhuman Primate (Macaca Mulatta): A Multidisciplinary Study

Loading next page...
 
/lp/american-medical-association/postnatal-development-of-vision-in-a-subhuman-primate-macaca-mulatta-a-Wt3oU0rU9t
Publisher
American Medical Association
Copyright
Copyright © 1965 American Medical Association. All Rights Reserved.
ISSN
0003-9950
eISSN
1538-3687
DOI
10.1001/archopht.1965.00970030676017
Publisher site
See Article on Publisher Site

Abstract

Abstract Introduction In recent years, many theories and a vast amount of empirical data concerning vision have come from various scientific disciplines ranging from electron microscopy, photochemistry, physiology, and ophthalmology to experimental psychology. However, this vast amount of information on vision has been obtained almost exclusively from research on adult subjects. The experimental literature on the postnatal structural and functional development of the visual system in newborn primates is still very fragmentary even though it is generally accepted that high visual acuity must play a basic role in the development of visually-guided behavior of man and the diurnal subhuman primates. Since a number of visual reflexes can be elicited by light at birth or shortly after in newborn primate infants, it is commonly accepted that gross visual sensitivity to light is present at birth. However, in view of the methodologic difficulties in testing neonatal infants and the consequent lack of experimental References 1. Gorman, J. J.; Cogan, D. G.; and Gellis, S. S.: Apparatus for Grading Visual Acuity of Infants on Basis of Optokinetic Nystagmus , Pediatrics , 19:1,088-1,092, 1957. 2. Fantz, R. L.; Ordy, J. M.; and Udelf, M. S.: Maturation of Pattern Vision in Infants During First Six Months , J Comp Physiol Psychol 55:907-917, 1962.Crossref 3. Dayton, G. O., Jr., et al: Developmental Study of Coordinated Eye Movements in Human Infant , Arch Ophthal 71:865-870, 1964.Crossref 4. Ordy, J. M.; Massopust, L. C., Jr.; and Wolin, L. R.: Postnatal Development of Retina, Electroretinogram, and Acuity in Rhesus Monkey , Exp Neurol 5:364-382, 1962.Crossref 5. Ordy, J. M., et al: Visual Acuity in Newborn Primate Infants , Proc Soc Exp Biol Med, 1964 , 115:677-680, 1964.Crossref 6. Weinstein, B., and Grether, W. F.: Comparison of Visual Acuity in Rhesus Monkey and Man , J Comp Physiol Psychol 30:187-195, 1940.Crossref 7. Weymouth, F. W., and Hirsh, M.: Relative Growth of Eye , Amer J Ophthal 27:317-328, 1950. 8. Dayton, G. O., Jr., et al: Developmental Study of Coordinated Eye Movements in Human Infant , Arch Ophthal 71:871-875, 1964.Crossref 9. Zetterstroem, B.: Studies on Postnatal Development of Electroretinogram in Newborn Infants, Eye Clinic , Karolinska Sjukhuset, Tryckeri AB Thule, Stockholm, 1956. 10. Horsten, G. P. M., and Winkelman, J. E.: Development of ERG in Relation to Histological Differentiation of Retina in Man and Animals , Arch Ophthal 63:232-242, 1960.Crossref 11. Kolmer, W.: "Entwicklung des Auges," XIX in W. v. Moellendorff (ed.), Handbuch der Mikroskopischen Anatomie des Menschen: Haut und Sinnesorgane , Berlin: Verlag von Julius Springer, 1936. 12. Mann, I.: Development of Human Eye , New York: Grune & Stratton, Inc., 1950. 13. Barber, A. N.: Embryology of Human Eye , St. Louis: C. V. Mosby Co., 1955. 14. Duke-Elder, S., and Cook, C.: System of Ophthalmology: III. Normal and Abnormal Development , St. Louis: C. V. Mosby Co., 1963, pp 291-313 15. Polyak, S.: Vertebrate Visual System , Chicago: University of Chicago Press, 1957. 16. Collins, R. L.: Photographic Elimination of Transiants Proc Soc Exp Biol Med, (PET) , 117:724-726, 1964.Crossref 17. David, G. B.; Mallion, K. B.; and Brown, A. W.: Method of Silvering "Golgi Apparatus" (Nissl Network) in Paraffin Sections of Central Nervous System of Vertebrates , Quart J Micr Sci 101:207-221, 1960. 18. Freeman, J., and Spurlock, B.: New Epoxy Embedment for Electron Microscopy , J Cell Biol 13:437-443, 1962.Crossref 19. Millonig, G.: Modified Procedure for Lead Staining of Thin Section , J Biophys Biochem Cytol 11:736-739, 1961.Crossref 20. Collins, R. L., et al: Reliability of Electroretinogram Latencies in Rhesus Monkey , Anat Rec 148:272, 1964.Crossref 21. Slataper, F. J.: Age Norms of Refraction and Vision , Arch Ophthal 43:455-481, 1950. 22. Gesell, A.; Ilg, I.; and Bullis, G.: Vision: Its Development in Infant and Child , New York: P. B. Hoeber, 1949. 23. Walls, G. L.: Vertebrate Eye , Bloomfield Hills, Mich: Cranbrook Press, 1942. 24. Zimmerman, R. R.: Analysis of Discrimination Learning Capacities in Infant Rhesus Monkey , J Comp Physiol Psychol 54:1-10, 1961.Crossref 25. Smelser, G. K.: Structure of Eye , New York: Academic Press, 1961. 26. Zetterstroem, B.: Flicker Electroretinography in Newborn Infants , Acta Ophthal 33:157-166, 1955.Crossref 27. Horsten, G. P. M., and Winkelman, J. E.: Electrical Activity of Retina in Relation to Histological Differentiation in Infants Born Prematurely and at Full-term , Vision Res 2:269-276, 1962.Crossref 28. Cohen, A. I.: Vertebrate Retinal Cells and Their Organization , Biol Rev 38:427-459, 1963.Crossref 29. Dartnall, H. J. A., and Tansley, K.: Physiology of Vision: Retinal Structure and Visual Pigments , Ann Rev Physiol 25:433-458, 1963.Crossref 30. Tokuyasu, G., and Yamada, E.: Fine Structure of Retina Studied With Electron Microscope: IV. Morphogenesis of Outer Segments of Retinal Rods , J Biophys Biochem Cytol 6:225-230, 1959.Crossref 31. Bonting, S. L.; Caravaggio, L. L.; and Gouras, P.: Rhodopsin Cycle in Developing Vertebrate Retina: I. Relation of Rhodopsin Content, Electroretinogram and Rod Structure in Rat , Exp Eye Res 1:14-24, 1961.Crossref 32. Himwich, W. A.: Biochemical and Neun physiological Development of Brain in Neonata Period , Int Rev Neurobiol 4:117-158, 1962.

Journal

Archives of OphthalmologyAmerican Medical Association

Published: May 1, 1965

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month