Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Long-term Prognosis of Poststroke Aphasia Studied With Positron Emission Tomography

Long-term Prognosis of Poststroke Aphasia Studied With Positron Emission Tomography Abstract Objective: To evaluate positron emission tomography with the use of fludeoxyglucose F 18 as a predictor of the long-term outcome of poststroke aphasia. Background: Positron emission tomography shows functional deficits after stroke even in morphologically intact brain regions. The regional metabolic impairment can be related to the clinical deficit. Little is known about whether regional hypometabolism early after stroke predicts the long-term prognosis of stroke sequelae. Patients and Methods: Twenty-two patients with language disturbance caused by a single lesion in the territory of the left middle cerebral artery were studied with fludeoxyglucose positron emission tomography and with a neuropsychological test battery that included a test of receptive language (Token Test) and a test of word fluency (/f/, /a/, /s/ test). The neuropsychological test was readministered about 2 years after the initial test. Results: Regional cerebral metabolic rates of glucose measured early after stroke showed a highly significant correlation with the results of the 2-year follow-up test. The receptive language disorder best correlated with cerebral metabolic rates of glucose in the left superior temporal cortex, and word fluency correlated with cerebral metabolic rates of glucose in the left prefrontal cortex. Conclusion: Cerebral metabolic rates of glucose in speech-relevant brain regions measured early after stroke are a predictor of the eventual outcome of aphasia. References 1. Kertesz A. Aphasia and Associated Disorders . New York, NY: Grune & Stratton; 1979. 2. Hartmann J. Measurement of early spontaneous recovery from aphasia with stroke . Ann Neurol . 1981;9:89-91.Crossref 3. Kertesz A, McCabe P. Recovery patterns and prognosis in aphasia . Brain . 1977; 100:1-18.Crossref 4. Demeurisse G, Demol O, Derouck M, DeBeuckelaer R, Coekaerts MJ, Capon A. Quantitative study of the rate of recovery from aphasia due to ischemic stroke . Stroke . 1980;11:455-458.Crossref 5. Naeser MA, Gaddie A, Palumbo CL, Stiassny-Eder D. Late recovery of auditory comprehension in global aphasia: improved recovery observed with subcortical temporal isthmus lesion vs Wernicke's cortical area zone . Arch Neurol . 1990; 47:425-432.Crossref 6. Sarno MT, Silverman M, Sands E. Speech therapy and language recovery in severe aphasia . J Speech Hear Res . 1970;13:607-623. 7. Metter EJ. Neuroanatomy and physiology of aphasia: evidence from positron emission tomography . Aphasiology . 1987;1:3-33.Crossref 8. Karbe H, Herholz K, Szelies B, Pawlik G, Wienhard K, Heiss WD. Regional metabolic correlates of Token Test results in cortical and subcortical left hemispheric infarction . Neurology . 1989:39:1083-1088.Crossref 9. Heiss WD, Kessler J, Karbe H, Fink GR, Pawlik G. Cerebral glucose metabolism as a predictor of recovery from aphasia in ischemic stroke . Arch Neurol . 1993;50:958-964.Crossref 10. Oldfield R. The assessment and analysis of handedness: the Edinburgh inventory . Neuropsychologia . 1971;9:97-113.Crossref 11. De Renzi E, Vignolo LA. The Token Test: a sensitive test to detect receptive disturbances in aphasics . Brain . 1962;85:665-678.Crossref 12. Spreen O, Strauss E. A Compendium of Neuropsychological Tests: Administration , Norms, and Commentary. New York, NY: Oxford University Press; 1991. 13. Reivich M, Kuhl D, Wolf A, et al. The (18F) fluorodeoxyglucose method for the measurement of local cerebral glucose . Circ Res . 1979;44:127-137.Crossref 14. Eriksson L, Blohm C, Kesselberg M, et al. A four ring positron camera system for emission tomography of the brain . IEEE Trans Nucl Sci . 1982;29:539-543.Crossref 15. Heiss WD, Pawlik G, Herholz K, Göldner H, Wienhard K. Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose . J Cereb Blood Flow Metab . 1984;4:212-223.Crossref 16. Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss WD. Estimation of local cerebral utilization by positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose: a critical appraisal of optimization procedures . J Cereb Blood Flow Metab . 1985;5:115-125.Crossref 17. Herholz K, Pawlik G, Wienhard K, Heiss WD. Computer assisted mapping in quantitative analysis of cerebral positron emission tomograms . J Comput Assist Tomogr . 1985;9:154-161.Crossref 18. Pawlik G, Herholz K, Wienhard K, Beil C, Heiss WD. Some maximum likelihood methods useful for the regional analysis of dynamic PET data on brain glucose metabolism . In: Bacharach SL, ed. Information Processing in Medical Imaging . Dordrecht, the Netherlands: Martinus Nijhoff Publishers; 1986;298-310. 19. Swisher LP, Sarno MT. Token Test of three matched patient groups: left brain-damaged with aphasia; right brain-damaged with aphasia; non-brain-damaged . Cortex . 1969;5:264-273.Crossref 20. Gallaher AJ. Temporal reliability of aphasic performance on the Token Test . Brain Lang . 1979;7:34-41.Crossref 21. Howard D, Patterson K, Wise R, et al. The cortical localization of the lexicons . Brain . 1992;115:1769-1782.Crossref 22. Karbe H, Szelies B, Herholz K, Heiss WD. Impairment of language is related to left parieto-temporal glucose metabolism in aphasic stroke . J Neurol . 1990; 237:19-23.Crossref 23. Borkowski JG, Benton AL, Spreen O. Word fluency and brain damage . Neuropsychologia . 1967;5:135-140.Crossref 24. Penfield W, Roberts L. Speech and Brain Mechanisms . Princeton, NJ: Princeton University Press; 1959. 25. Mesulam MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory . Ann Neurol . 1990;28:597-613.Crossref 26. Benton AL. Differential behavioral effects in frontal lobe disease . Neuropsychologia . 1968;6:53-60.Crossref 27. Parks RW, Loewenstein DA, Dodrill KL, et al. Cerebral metabolic effects of verbal fluency test: a PET scan study . J Clin Exp Neuropsychol . 1988;10:565-575.Crossref 28. Larsen B, Skinhoj E, Lassen NA. Variations of regional cortical blood flow in the right and left hemisphere during automatic speech . Brain . 1978;101:193-209.Crossref 29. Posner MJ, Petersen SE, Fox PT, Raichle ME. Localization of cognitive operations in the human brain . Science . 1988;240:1627-1631.Crossref 30. Petersen SE, Fox PT, Snyder AZ, Raichle ME. Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli . Science . 1990; 249:1041-1044.Crossref 31. Wise R, Chollet F, Hadar U, Friston K, Hoffner E, Frackowiak R. Distribution of cortical neural networks involved in word comprehension and word retrieval . Brain . 1991;114:1803-1817.Crossref 32. Firth CD, Friston KJ, Liddle PF, Frackowiak RSJ. A PET study of word finding . Neuropsychologia . 1991;29:1137-1148.Crossref 33. Ojeman GA, Creutzfeld O, Lettich E, Haglund MM. Neuronal activity in human lateral temporal cortex relates to short-term verbal memory, naming and reading . Brain . 1988;111:1383-1403.Crossref 34. Damasio AR. Aphasia . N Engl J Med . 1992;326:531-539.Crossref 35. Metter EJ, Riege WH, Hanson WR, Phelps ME, Kuhl DE. Evidence for a caudate role in aphasia from FDG positron computed tomography . Aphasiology . 1988;2:33-43.Crossref 36. Metter EJ, Kempler D, Jackson CA, et al. Cerebellar glucose metabolism in chronic aphasia . Neurology . 1987;37:1599-1606.Crossref 37. Knopman DS, Selnes OA, Niccum N, Rubens AB, Yock D, Larson D. A longitudinal study of speech fluency in aphasia: CT correlates of recovery and persistent nonfluency . Neurology . 1983;33:1170-1178.Crossref 38. Naeser MA, Palumbo CL, Helm-Estabrooks N. Stiassny-Eder D, Albert ML. Severe nonfluency in aphasia: role of the medial subcallosal fasciculus and other white matter pathways in recovery of spontaneous speech . Brain . 1989;112: 1-38.Crossref 39. Mies G, Auer LM, Ebhardt G, Traupe H, Heiss WD. Flow and neuronal density in tissue surrounding chronic infarction . Stroke . 1983;14:22-27.Crossref 40. Feeney DM, Baron JC. Diaschisis . Stroke . 1986;17:817-830.Crossref http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Neurology American Medical Association

Long-term Prognosis of Poststroke Aphasia Studied With Positron Emission Tomography

Loading next page...
 
/lp/american-medical-association/long-term-prognosis-of-poststroke-aphasia-studied-with-positron-aSq8vwRCf4
Publisher
American Medical Association
Copyright
Copyright © 1995 American Medical Association. All Rights Reserved.
ISSN
0003-9942
eISSN
1538-3687
DOI
10.1001/archneur.1995.00540260092022
Publisher site
See Article on Publisher Site

Abstract

Abstract Objective: To evaluate positron emission tomography with the use of fludeoxyglucose F 18 as a predictor of the long-term outcome of poststroke aphasia. Background: Positron emission tomography shows functional deficits after stroke even in morphologically intact brain regions. The regional metabolic impairment can be related to the clinical deficit. Little is known about whether regional hypometabolism early after stroke predicts the long-term prognosis of stroke sequelae. Patients and Methods: Twenty-two patients with language disturbance caused by a single lesion in the territory of the left middle cerebral artery were studied with fludeoxyglucose positron emission tomography and with a neuropsychological test battery that included a test of receptive language (Token Test) and a test of word fluency (/f/, /a/, /s/ test). The neuropsychological test was readministered about 2 years after the initial test. Results: Regional cerebral metabolic rates of glucose measured early after stroke showed a highly significant correlation with the results of the 2-year follow-up test. The receptive language disorder best correlated with cerebral metabolic rates of glucose in the left superior temporal cortex, and word fluency correlated with cerebral metabolic rates of glucose in the left prefrontal cortex. Conclusion: Cerebral metabolic rates of glucose in speech-relevant brain regions measured early after stroke are a predictor of the eventual outcome of aphasia. References 1. Kertesz A. Aphasia and Associated Disorders . New York, NY: Grune & Stratton; 1979. 2. Hartmann J. Measurement of early spontaneous recovery from aphasia with stroke . Ann Neurol . 1981;9:89-91.Crossref 3. Kertesz A, McCabe P. Recovery patterns and prognosis in aphasia . Brain . 1977; 100:1-18.Crossref 4. Demeurisse G, Demol O, Derouck M, DeBeuckelaer R, Coekaerts MJ, Capon A. Quantitative study of the rate of recovery from aphasia due to ischemic stroke . Stroke . 1980;11:455-458.Crossref 5. Naeser MA, Gaddie A, Palumbo CL, Stiassny-Eder D. Late recovery of auditory comprehension in global aphasia: improved recovery observed with subcortical temporal isthmus lesion vs Wernicke's cortical area zone . Arch Neurol . 1990; 47:425-432.Crossref 6. Sarno MT, Silverman M, Sands E. Speech therapy and language recovery in severe aphasia . J Speech Hear Res . 1970;13:607-623. 7. Metter EJ. Neuroanatomy and physiology of aphasia: evidence from positron emission tomography . Aphasiology . 1987;1:3-33.Crossref 8. Karbe H, Herholz K, Szelies B, Pawlik G, Wienhard K, Heiss WD. Regional metabolic correlates of Token Test results in cortical and subcortical left hemispheric infarction . Neurology . 1989:39:1083-1088.Crossref 9. Heiss WD, Kessler J, Karbe H, Fink GR, Pawlik G. Cerebral glucose metabolism as a predictor of recovery from aphasia in ischemic stroke . Arch Neurol . 1993;50:958-964.Crossref 10. Oldfield R. The assessment and analysis of handedness: the Edinburgh inventory . Neuropsychologia . 1971;9:97-113.Crossref 11. De Renzi E, Vignolo LA. The Token Test: a sensitive test to detect receptive disturbances in aphasics . Brain . 1962;85:665-678.Crossref 12. Spreen O, Strauss E. A Compendium of Neuropsychological Tests: Administration , Norms, and Commentary. New York, NY: Oxford University Press; 1991. 13. Reivich M, Kuhl D, Wolf A, et al. The (18F) fluorodeoxyglucose method for the measurement of local cerebral glucose . Circ Res . 1979;44:127-137.Crossref 14. Eriksson L, Blohm C, Kesselberg M, et al. A four ring positron camera system for emission tomography of the brain . IEEE Trans Nucl Sci . 1982;29:539-543.Crossref 15. Heiss WD, Pawlik G, Herholz K, Göldner H, Wienhard K. Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose . J Cereb Blood Flow Metab . 1984;4:212-223.Crossref 16. Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss WD. Estimation of local cerebral utilization by positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose: a critical appraisal of optimization procedures . J Cereb Blood Flow Metab . 1985;5:115-125.Crossref 17. Herholz K, Pawlik G, Wienhard K, Heiss WD. Computer assisted mapping in quantitative analysis of cerebral positron emission tomograms . J Comput Assist Tomogr . 1985;9:154-161.Crossref 18. Pawlik G, Herholz K, Wienhard K, Beil C, Heiss WD. Some maximum likelihood methods useful for the regional analysis of dynamic PET data on brain glucose metabolism . In: Bacharach SL, ed. Information Processing in Medical Imaging . Dordrecht, the Netherlands: Martinus Nijhoff Publishers; 1986;298-310. 19. Swisher LP, Sarno MT. Token Test of three matched patient groups: left brain-damaged with aphasia; right brain-damaged with aphasia; non-brain-damaged . Cortex . 1969;5:264-273.Crossref 20. Gallaher AJ. Temporal reliability of aphasic performance on the Token Test . Brain Lang . 1979;7:34-41.Crossref 21. Howard D, Patterson K, Wise R, et al. The cortical localization of the lexicons . Brain . 1992;115:1769-1782.Crossref 22. Karbe H, Szelies B, Herholz K, Heiss WD. Impairment of language is related to left parieto-temporal glucose metabolism in aphasic stroke . J Neurol . 1990; 237:19-23.Crossref 23. Borkowski JG, Benton AL, Spreen O. Word fluency and brain damage . Neuropsychologia . 1967;5:135-140.Crossref 24. Penfield W, Roberts L. Speech and Brain Mechanisms . Princeton, NJ: Princeton University Press; 1959. 25. Mesulam MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory . Ann Neurol . 1990;28:597-613.Crossref 26. Benton AL. Differential behavioral effects in frontal lobe disease . Neuropsychologia . 1968;6:53-60.Crossref 27. Parks RW, Loewenstein DA, Dodrill KL, et al. Cerebral metabolic effects of verbal fluency test: a PET scan study . J Clin Exp Neuropsychol . 1988;10:565-575.Crossref 28. Larsen B, Skinhoj E, Lassen NA. Variations of regional cortical blood flow in the right and left hemisphere during automatic speech . Brain . 1978;101:193-209.Crossref 29. Posner MJ, Petersen SE, Fox PT, Raichle ME. Localization of cognitive operations in the human brain . Science . 1988;240:1627-1631.Crossref 30. Petersen SE, Fox PT, Snyder AZ, Raichle ME. Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli . Science . 1990; 249:1041-1044.Crossref 31. Wise R, Chollet F, Hadar U, Friston K, Hoffner E, Frackowiak R. Distribution of cortical neural networks involved in word comprehension and word retrieval . Brain . 1991;114:1803-1817.Crossref 32. Firth CD, Friston KJ, Liddle PF, Frackowiak RSJ. A PET study of word finding . Neuropsychologia . 1991;29:1137-1148.Crossref 33. Ojeman GA, Creutzfeld O, Lettich E, Haglund MM. Neuronal activity in human lateral temporal cortex relates to short-term verbal memory, naming and reading . Brain . 1988;111:1383-1403.Crossref 34. Damasio AR. Aphasia . N Engl J Med . 1992;326:531-539.Crossref 35. Metter EJ, Riege WH, Hanson WR, Phelps ME, Kuhl DE. Evidence for a caudate role in aphasia from FDG positron computed tomography . Aphasiology . 1988;2:33-43.Crossref 36. Metter EJ, Kempler D, Jackson CA, et al. Cerebellar glucose metabolism in chronic aphasia . Neurology . 1987;37:1599-1606.Crossref 37. Knopman DS, Selnes OA, Niccum N, Rubens AB, Yock D, Larson D. A longitudinal study of speech fluency in aphasia: CT correlates of recovery and persistent nonfluency . Neurology . 1983;33:1170-1178.Crossref 38. Naeser MA, Palumbo CL, Helm-Estabrooks N. Stiassny-Eder D, Albert ML. Severe nonfluency in aphasia: role of the medial subcallosal fasciculus and other white matter pathways in recovery of spontaneous speech . Brain . 1989;112: 1-38.Crossref 39. Mies G, Auer LM, Ebhardt G, Traupe H, Heiss WD. Flow and neuronal density in tissue surrounding chronic infarction . Stroke . 1983;14:22-27.Crossref 40. Feeney DM, Baron JC. Diaschisis . Stroke . 1986;17:817-830.Crossref

Journal

Archives of NeurologyAmerican Medical Association

Published: Feb 1, 1995

References