Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Contractile Responses of Cultured Bovine Retinal Pericytes to Angiotensin II

Contractile Responses of Cultured Bovine Retinal Pericytes to Angiotensin II Abstract Objective: To document that angiotensin (ANG) II contracts cultured bovine retinal pericytes via saralasin-sensitive receptors if the cells are prerelaxed. Methods: Changes in the contractile tone were quantified as the changes in the summed length of wrinkles induced by pericytes cultured on the silicone surface. Results: Angiotensin II (10-5 mol/L) did not increase the contractile tone of cultured pericytes that were not prerelaxed. However, when the pericytes had been prerelaxed 41% with 10-6-mol/L sodium nitroprusside, ANG II at the range of 10-7 to 10-5 mol/L caused prompt, dose-related, significant (P<.01) contraction. It induced a maximum contraction (29.9%±5.2% [mean±SE]) at 10-6 mol/L. This effect lasted at least 10 minutes. Angiotensin II receptor antagonist saralasin (10-6 mol/L) abolished the contractile effect of ANG II (10-6 mol/L), although by itself it did not affect the contractile tone. Conclusions: Angiotensin II contracts cultured pericytes through saralasin-sensitive ANG II receptors. If ANG II affects the contractile tone of pericytes in vivo, it may affect capillary caliber, resistance, and blood flow. References 1. Kelley C, D'Amore P, Hechtman HB, et al. Microvascular pericyte contractility in vitro: comparison with other cells of the vascular wall . J Cell Biol . 1987;104:483-490.Crossref 2. Kelley C, D'Amore P, Hechtman HB, et al. Vasoactive hormones and cAMP affect pericyte contraction and stress fibers in vitro . J Muscle Res Cell Motil . 1988;9:184-194.Crossref 3. Dodge AB, Hechtman HB, Shepro D. Microvascular endothelial-derived autacoids regulate pericyte contractility . Cell Motil Cytoskel . 1991;18:180-188.Crossref 4. Ferrari-Dileo G, Davis EB, Anderson DR. Effects of cholinergic and adrenergic agonists on adenylate cyclase activity of retinal microvascular pericytes in culture . Invest Ophthalmol Vis Sci . 1992;33:42-47. 5. Chakravarthy U, Gardiner TA, Anderson P, et al. The effect of endothelin I on the retinal microvascular pericyte . Microvasc Res . 1992;43:241-254.Crossref 6. Joyce NC, Haire MF, Palade GE. Contractile proteins in pericytes, I: immunoperoxidase localization of tropomyosin . J Cell Biol . 1985;100:1379-1386.Crossref 7. Joyce NC, Haire MF, Palade GE. Contractile proteins in pericytes, II: immunocytochemical evidence for the presence of two isomyosins in graded concentrations . J Cell Biol . 1985;100:1387-1395.Crossref 8. Chan LS, Li W, Khatami M, et al. Actin in cultured bovine retinal capillary pericytes: morphological and functional correlation . Exp Eye Res . 1986;43:41-54.Crossref 9. Haefliger IO, Zschauer A, Anderson DR. Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway . Invest Ophthalmol Vis Sci . 1994;35:991-997. 10. Zschauer AOA, Davis EB, Anderson DR. Glaucoma, capillaries, and pericytes, 4: beta-adrenergic activation of cultured retinal pericytes . Ophthalmologica . 1996;210:276-279.Crossref 11. Ferrari-Dileo G, Davis EB, Anderson DR. Glaucoma, capillaries, and pericytes, 3: peptide hormone-binding and influence on pericytes . Ophthalmologica . 1996;210:269-275.Crossref 12. Ferrari-Dileo G, Davis EB, Anderson DR. Angiotensin binding sites in bovine and human retinal blood vessels . Invest Ophthalmol Vis Sci . 1987;28:1747-1751. 13. Anderson DR. The posterior segment of glaucomatous eyes . In: Lutjen-Drecoll E, ed. Basic Aspects of Glaucoma Research . New York, NY: FK Schattauer Verlag; 1982:167-190. 14. Anderson DR. The mechanisms of damage of the optic nerve . In: Krieglstein GK, Leydhecker W, eds. Glaucoma Update II . New York, NY: Springer-Verlag NY Inc; 1983:89-93. 15. Sossi N, Anderson DR. Blockage of axonal transport in optic nerve induced by elevation of intraocular pressure: effect of arterial hypertension induced by angiotensin I . Arch Ophthalmol . 1983;101:94-97.Crossref 16. D'Amore PA. Culture and study of pericytes . In: Piper HM, ed. Cell Culture Techniques in Heart and Vessel Research . New York, NY: Springer-Verlag NY Inc; 1990:299-314. 17. Anderson DR, Davis EB. Glaucoma, capillaries, and pericytes, 2: identification and characterization of retinal pericytes in culture . Ophthalmologica . 1996;210:263-268.Crossref 18. Nayak RC, Berman AB, Georg KL, et al. A monoclonal antibody (3G5)-defined ganglioside antigen is expressed on the cell surface of microvascular pericytes . J Exp Med . 1988;167:1003-1015.Crossref 19. Voyta JC, Via DP, Butterfield CE, et al. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein . J Cell Biol . 1984;99:2034-2040.Crossref 20. Harris AK, Wild P, Stopak D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion . Science . 1980;208:177-179.Crossref 21. Düsterdieck G, McElwee G. Estimation of angiotensin II concentration in human plasma by radioimmunoassay: some applications to physiological and clinical states . Eur J Clin Invest . 1971;2:32-38.Crossref 22. Semple PF, Boyd AS, Dawes PM, et al. Angiotensin II and its heptapeptide (2-8), hexapeptide (3-8), and pentapeptide (4-8) metabolites in arterial and venous blood of man . Circ Res . 1976;39:671-678.Crossref 23. Mann JFE, Johnson AK, Ganten D. Plasma angiotensin, II: dipsogenic levels and angiotensin-generating capacity of renin . Am J Physiol . 1980;38:R372-R377. 24. Danser AH, Derkx FH, Admiraal PJ, et al. Angiotensin levels in the eye . Invest Ophthalmol Vis Sci . 1994;35:1008-1018. 25. Buzney SM, Massicotte SJ, Hetu N, et al. Retinal vascular endothelial cells and pericytes: differential growth characteristics in vitro . Invest Ophthalmol Vis Sci . 1983;24:470-480. 26. Ferrari-Dileo G, Ryan JW, Rockwood EJ, et al. Angiotensin-converting enzyme in bovine, feline, and human ocular tissues . Invest Ophthalmol Vis Sci . 1988;29:876-881. 27. Matsugi T, Chen Q, Anderson DR. Suppression of CO2-induced relaxation of bovine retinal pericytes by angiotensin II . Invest Ophthalmol Vis Sci . 1997;38:652-657. 28. Butryn RK, Ruan H, Hull CM, Frank RN. Vasoactive agonists do not change the caliber of retinal capillaries of the rat . Microvasc Res . 1995;0:80-93.Crossref http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Ophthalmology American Medical Association

Contractile Responses of Cultured Bovine Retinal Pericytes to Angiotensin II

Loading next page...
 
/lp/american-medical-association/contractile-responses-of-cultured-bovine-retinal-pericytes-to-RdWFL5EFCx
Publisher
American Medical Association
Copyright
Copyright © 1997 American Medical Association. All Rights Reserved.
ISSN
0003-9950
eISSN
1538-3687
DOI
10.1001/archopht.1997.01100160451011
Publisher site
See Article on Publisher Site

Abstract

Abstract Objective: To document that angiotensin (ANG) II contracts cultured bovine retinal pericytes via saralasin-sensitive receptors if the cells are prerelaxed. Methods: Changes in the contractile tone were quantified as the changes in the summed length of wrinkles induced by pericytes cultured on the silicone surface. Results: Angiotensin II (10-5 mol/L) did not increase the contractile tone of cultured pericytes that were not prerelaxed. However, when the pericytes had been prerelaxed 41% with 10-6-mol/L sodium nitroprusside, ANG II at the range of 10-7 to 10-5 mol/L caused prompt, dose-related, significant (P<.01) contraction. It induced a maximum contraction (29.9%±5.2% [mean±SE]) at 10-6 mol/L. This effect lasted at least 10 minutes. Angiotensin II receptor antagonist saralasin (10-6 mol/L) abolished the contractile effect of ANG II (10-6 mol/L), although by itself it did not affect the contractile tone. Conclusions: Angiotensin II contracts cultured pericytes through saralasin-sensitive ANG II receptors. If ANG II affects the contractile tone of pericytes in vivo, it may affect capillary caliber, resistance, and blood flow. References 1. Kelley C, D'Amore P, Hechtman HB, et al. Microvascular pericyte contractility in vitro: comparison with other cells of the vascular wall . J Cell Biol . 1987;104:483-490.Crossref 2. Kelley C, D'Amore P, Hechtman HB, et al. Vasoactive hormones and cAMP affect pericyte contraction and stress fibers in vitro . J Muscle Res Cell Motil . 1988;9:184-194.Crossref 3. Dodge AB, Hechtman HB, Shepro D. Microvascular endothelial-derived autacoids regulate pericyte contractility . Cell Motil Cytoskel . 1991;18:180-188.Crossref 4. Ferrari-Dileo G, Davis EB, Anderson DR. Effects of cholinergic and adrenergic agonists on adenylate cyclase activity of retinal microvascular pericytes in culture . Invest Ophthalmol Vis Sci . 1992;33:42-47. 5. Chakravarthy U, Gardiner TA, Anderson P, et al. The effect of endothelin I on the retinal microvascular pericyte . Microvasc Res . 1992;43:241-254.Crossref 6. Joyce NC, Haire MF, Palade GE. Contractile proteins in pericytes, I: immunoperoxidase localization of tropomyosin . J Cell Biol . 1985;100:1379-1386.Crossref 7. Joyce NC, Haire MF, Palade GE. Contractile proteins in pericytes, II: immunocytochemical evidence for the presence of two isomyosins in graded concentrations . J Cell Biol . 1985;100:1387-1395.Crossref 8. Chan LS, Li W, Khatami M, et al. Actin in cultured bovine retinal capillary pericytes: morphological and functional correlation . Exp Eye Res . 1986;43:41-54.Crossref 9. Haefliger IO, Zschauer A, Anderson DR. Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway . Invest Ophthalmol Vis Sci . 1994;35:991-997. 10. Zschauer AOA, Davis EB, Anderson DR. Glaucoma, capillaries, and pericytes, 4: beta-adrenergic activation of cultured retinal pericytes . Ophthalmologica . 1996;210:276-279.Crossref 11. Ferrari-Dileo G, Davis EB, Anderson DR. Glaucoma, capillaries, and pericytes, 3: peptide hormone-binding and influence on pericytes . Ophthalmologica . 1996;210:269-275.Crossref 12. Ferrari-Dileo G, Davis EB, Anderson DR. Angiotensin binding sites in bovine and human retinal blood vessels . Invest Ophthalmol Vis Sci . 1987;28:1747-1751. 13. Anderson DR. The posterior segment of glaucomatous eyes . In: Lutjen-Drecoll E, ed. Basic Aspects of Glaucoma Research . New York, NY: FK Schattauer Verlag; 1982:167-190. 14. Anderson DR. The mechanisms of damage of the optic nerve . In: Krieglstein GK, Leydhecker W, eds. Glaucoma Update II . New York, NY: Springer-Verlag NY Inc; 1983:89-93. 15. Sossi N, Anderson DR. Blockage of axonal transport in optic nerve induced by elevation of intraocular pressure: effect of arterial hypertension induced by angiotensin I . Arch Ophthalmol . 1983;101:94-97.Crossref 16. D'Amore PA. Culture and study of pericytes . In: Piper HM, ed. Cell Culture Techniques in Heart and Vessel Research . New York, NY: Springer-Verlag NY Inc; 1990:299-314. 17. Anderson DR, Davis EB. Glaucoma, capillaries, and pericytes, 2: identification and characterization of retinal pericytes in culture . Ophthalmologica . 1996;210:263-268.Crossref 18. Nayak RC, Berman AB, Georg KL, et al. A monoclonal antibody (3G5)-defined ganglioside antigen is expressed on the cell surface of microvascular pericytes . J Exp Med . 1988;167:1003-1015.Crossref 19. Voyta JC, Via DP, Butterfield CE, et al. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein . J Cell Biol . 1984;99:2034-2040.Crossref 20. Harris AK, Wild P, Stopak D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion . Science . 1980;208:177-179.Crossref 21. Düsterdieck G, McElwee G. Estimation of angiotensin II concentration in human plasma by radioimmunoassay: some applications to physiological and clinical states . Eur J Clin Invest . 1971;2:32-38.Crossref 22. Semple PF, Boyd AS, Dawes PM, et al. Angiotensin II and its heptapeptide (2-8), hexapeptide (3-8), and pentapeptide (4-8) metabolites in arterial and venous blood of man . Circ Res . 1976;39:671-678.Crossref 23. Mann JFE, Johnson AK, Ganten D. Plasma angiotensin, II: dipsogenic levels and angiotensin-generating capacity of renin . Am J Physiol . 1980;38:R372-R377. 24. Danser AH, Derkx FH, Admiraal PJ, et al. Angiotensin levels in the eye . Invest Ophthalmol Vis Sci . 1994;35:1008-1018. 25. Buzney SM, Massicotte SJ, Hetu N, et al. Retinal vascular endothelial cells and pericytes: differential growth characteristics in vitro . Invest Ophthalmol Vis Sci . 1983;24:470-480. 26. Ferrari-Dileo G, Ryan JW, Rockwood EJ, et al. Angiotensin-converting enzyme in bovine, feline, and human ocular tissues . Invest Ophthalmol Vis Sci . 1988;29:876-881. 27. Matsugi T, Chen Q, Anderson DR. Suppression of CO2-induced relaxation of bovine retinal pericytes by angiotensin II . Invest Ophthalmol Vis Sci . 1997;38:652-657. 28. Butryn RK, Ruan H, Hull CM, Frank RN. Vasoactive agonists do not change the caliber of retinal capillaries of the rat . Microvasc Res . 1995;0:80-93.Crossref

Journal

Archives of OphthalmologyAmerican Medical Association

Published: Oct 1, 1997

References