Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Commercial Air Travel With a Small Intravitreous Gas Bubble

Commercial Air Travel With a Small Intravitreous Gas Bubble Although the risks of air travel with an intravitreous gas bubble have been well documented, there have been suggestions in the literature that such a flight may be safe under certain conditions, especially with small bubbles. We report a case of significant visual field loss following commercial air travel in a patient with a 10% intravitreous perfluoropropane gas fill. Report of a Case A 64-year-old man with a history of retinal detachment in the left eye visited his ophthalmologist with a 24-hour history of an “explosion” of floaters in the right eye. His history was also remarkable for glaucoma, for which he was receiving 2 medications but had no glaucomatous damage evident in the right eye on optical coherence tomography and visual field testing (Figure 1A and Figure 2A). On dilated fundus examination, a large superotemporal retinal tear was found in the right eye. The patient was referred emergently to the on-call retinal specialist. The tear progressed to a superotemporal macula-on detachment despite laser retinopexy, and the patient underwent vitrectomy and gas-fluid exchange with 10% perfluoropropane. Treatment with oral acetazolamide was started as the intraocular pressure was found to be 27 mm Hg OD 1 day postoperatively; the intraocular pressure remained within normal limits thereafter. On a postoperative visit exactly 1 month later, the patient's cup-disc ratio was recorded as a stable 0.3 and treatment with acetazolamide was discontinued. The gas bubble was noted to be well above the pupil on examination in the sitting position and was approximately one-third of the height from the ora serrata to the equator, thus indicating less than a 10% fill remaining. The risks of air travel with an intraocular gas bubble were explained, but the patient declined to have the gas removed before his planned flight the following week. Soon after takeoff on a commercial aircraft, the patient noted moderate discomfort in the right eye followed by a complete loss of vision in this eye. The discomfort and loss of vision did not subside until shortly after landing. He did not experience similar symptoms 2 weeks later on the return flight. On examination immediately following his return to Canada, the cup-disc ratio of his right optic nerve had increased from 0.3 to 0.5. His optical coherence tomographic scan demonstrated a striking loss of the nerve fiber layer from an average thickness of 96.99 μm before the flight to 85.55 μm afterward (Figure 1B). This change was accompanied by a corresponding new superonasal visual field defect demonstrated on Goldmann visual field examination (Figure 2B). Comment Vitreoretinal surgery often involves the use of air or medical gases, primarily perfluoropropane or sulfur hexafluoride, injected directly into the vitreous cavity. As resorption of these gases is first order, small gas volumes may be present for weeks or months.1 Although the risks of air travel with intraocular gas have been well documented, there have been some suggestions in the literature that under certain conditions (eg, low-altitude flight or small gas bubbles) flight with intraocular gas may be safe, if inadvisable.2-4 As an aircraft gains altitude, the atmospheric pressure decreases. Commercial flights routinely reach altitudes up to 40 000 feet above sea level, with cabin pressures typically maintained at less than 9000 feet. As the atmospheric pressure decreases, an intraocular gas bubble will undergo expansion following Boyle's law: P1V1 = P2V2, where P indicates the pressure of the system and V indicates the volume of the gas. The eye has several compensatory mechanisms including limited choroidal flattening, scleral expansion, and increased aqueous outflow, but these mechanisms are limited in their ability to accommodate expansion of the intraocular gas bubble.5 Once the globe's maximum capacity is reached, the intraocular pressure increases, which may result in acute glaucoma and even central retinal artery occlusion.6 Although the patient likely had diminished compensatory capacity for increasing intraocular pressures due to underlying glaucoma, we report this case as evidence that flight with even a small gas bubble is not without risk. Correspondence: Dr Muzychuk, Rockyview Eye Clinic, 7007 14th St SW, Calgary, AB T2V 1P9, Canada (adam.muzychuk@med.ucalgary.ca). Financial Disclosure: None reported. References 1. Thompson JT Kinetics of intraocular gases: disappearance of air, sulfur hexafluoride, and perfluoropropane after pars plana vitrectomy. Arch Ophthalmol 1989;107 (5) 687- 691PubMedGoogle ScholarCrossref 2. Dieckert JPO’Connor PSSchacklett DE et al. Air travel and intraocular gas. Ophthalmology 1986;93 (5) 642- 645PubMedGoogle ScholarCrossref 3. Lincoff HWeinberger DStergiu P Air travel with intraocular gas, II: clinical considerations. Arch Ophthalmol 1989;107 (6) 907- 910PubMedGoogle ScholarCrossref 4. Kokame GTIng MR Intraocular gas and low-altitude air flight. Retina 1994;14 (4) 356- 358PubMedGoogle ScholarCrossref 5. Lincoff HWeinberger DReppucci VLincoff A Air travel with intraocular gas, I: the mechanisms for compensation. Arch Ophthalmol 1989;107 (6) 902- 906PubMedGoogle ScholarCrossref 6. Mills MDDevenyi RGLam WCBerger ARBeijer CDLam SR An assessment of intraocular pressure rise in patients with gas-filled eyes during simulated air flight. Ophthalmology 2001;108 (1) 40- 44PubMedGoogle ScholarCrossref http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Ophthalmology American Medical Association

Commercial Air Travel With a Small Intravitreous Gas Bubble

Loading next page...
 
/lp/american-medical-association/commercial-air-travel-with-a-small-intravitreous-gas-bubble-cjVLxKHIUz
Publisher
American Medical Association
Copyright
Copyright © 2011 American Medical Association. All Rights Reserved.
ISSN
0003-9950
eISSN
1538-3687
DOI
10.1001/archophthalmol.2011.144
Publisher site
See Article on Publisher Site

Abstract

Although the risks of air travel with an intravitreous gas bubble have been well documented, there have been suggestions in the literature that such a flight may be safe under certain conditions, especially with small bubbles. We report a case of significant visual field loss following commercial air travel in a patient with a 10% intravitreous perfluoropropane gas fill. Report of a Case A 64-year-old man with a history of retinal detachment in the left eye visited his ophthalmologist with a 24-hour history of an “explosion” of floaters in the right eye. His history was also remarkable for glaucoma, for which he was receiving 2 medications but had no glaucomatous damage evident in the right eye on optical coherence tomography and visual field testing (Figure 1A and Figure 2A). On dilated fundus examination, a large superotemporal retinal tear was found in the right eye. The patient was referred emergently to the on-call retinal specialist. The tear progressed to a superotemporal macula-on detachment despite laser retinopexy, and the patient underwent vitrectomy and gas-fluid exchange with 10% perfluoropropane. Treatment with oral acetazolamide was started as the intraocular pressure was found to be 27 mm Hg OD 1 day postoperatively; the intraocular pressure remained within normal limits thereafter. On a postoperative visit exactly 1 month later, the patient's cup-disc ratio was recorded as a stable 0.3 and treatment with acetazolamide was discontinued. The gas bubble was noted to be well above the pupil on examination in the sitting position and was approximately one-third of the height from the ora serrata to the equator, thus indicating less than a 10% fill remaining. The risks of air travel with an intraocular gas bubble were explained, but the patient declined to have the gas removed before his planned flight the following week. Soon after takeoff on a commercial aircraft, the patient noted moderate discomfort in the right eye followed by a complete loss of vision in this eye. The discomfort and loss of vision did not subside until shortly after landing. He did not experience similar symptoms 2 weeks later on the return flight. On examination immediately following his return to Canada, the cup-disc ratio of his right optic nerve had increased from 0.3 to 0.5. His optical coherence tomographic scan demonstrated a striking loss of the nerve fiber layer from an average thickness of 96.99 μm before the flight to 85.55 μm afterward (Figure 1B). This change was accompanied by a corresponding new superonasal visual field defect demonstrated on Goldmann visual field examination (Figure 2B). Comment Vitreoretinal surgery often involves the use of air or medical gases, primarily perfluoropropane or sulfur hexafluoride, injected directly into the vitreous cavity. As resorption of these gases is first order, small gas volumes may be present for weeks or months.1 Although the risks of air travel with intraocular gas have been well documented, there have been some suggestions in the literature that under certain conditions (eg, low-altitude flight or small gas bubbles) flight with intraocular gas may be safe, if inadvisable.2-4 As an aircraft gains altitude, the atmospheric pressure decreases. Commercial flights routinely reach altitudes up to 40 000 feet above sea level, with cabin pressures typically maintained at less than 9000 feet. As the atmospheric pressure decreases, an intraocular gas bubble will undergo expansion following Boyle's law: P1V1 = P2V2, where P indicates the pressure of the system and V indicates the volume of the gas. The eye has several compensatory mechanisms including limited choroidal flattening, scleral expansion, and increased aqueous outflow, but these mechanisms are limited in their ability to accommodate expansion of the intraocular gas bubble.5 Once the globe's maximum capacity is reached, the intraocular pressure increases, which may result in acute glaucoma and even central retinal artery occlusion.6 Although the patient likely had diminished compensatory capacity for increasing intraocular pressures due to underlying glaucoma, we report this case as evidence that flight with even a small gas bubble is not without risk. Correspondence: Dr Muzychuk, Rockyview Eye Clinic, 7007 14th St SW, Calgary, AB T2V 1P9, Canada (adam.muzychuk@med.ucalgary.ca). Financial Disclosure: None reported. References 1. Thompson JT Kinetics of intraocular gases: disappearance of air, sulfur hexafluoride, and perfluoropropane after pars plana vitrectomy. Arch Ophthalmol 1989;107 (5) 687- 691PubMedGoogle ScholarCrossref 2. Dieckert JPO’Connor PSSchacklett DE et al. Air travel and intraocular gas. Ophthalmology 1986;93 (5) 642- 645PubMedGoogle ScholarCrossref 3. Lincoff HWeinberger DStergiu P Air travel with intraocular gas, II: clinical considerations. Arch Ophthalmol 1989;107 (6) 907- 910PubMedGoogle ScholarCrossref 4. Kokame GTIng MR Intraocular gas and low-altitude air flight. Retina 1994;14 (4) 356- 358PubMedGoogle ScholarCrossref 5. Lincoff HWeinberger DReppucci VLincoff A Air travel with intraocular gas, I: the mechanisms for compensation. Arch Ophthalmol 1989;107 (6) 902- 906PubMedGoogle ScholarCrossref 6. Mills MDDevenyi RGLam WCBerger ARBeijer CDLam SR An assessment of intraocular pressure rise in patients with gas-filled eyes during simulated air flight. Ophthalmology 2001;108 (1) 40- 44PubMedGoogle ScholarCrossref

Journal

Archives of OphthalmologyAmerican Medical Association

Published: Jun 13, 2011

Keywords: air travel

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month