Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Biological Significance of Iron-Related Magnetic Resonance Imaging Changes in the Brain

Biological Significance of Iron-Related Magnetic Resonance Imaging Changes in the Brain Abstract • Iron, an essential element for basic cellular metabolism, regularly accumulates in certain brain areas in normal subjects and in patients with certain diseases. Magnetic resonance imaging can depict iron deposition, offering a singular opportunity to correlate the regional iron content with the functional status of the human brain in vivo. We studied the relationship between age and the iron-related signal loss on T2-weighted images in basal ganglia, and observed a strongly significant signal decrease in the globus pallidus at the age of brain development (first two decades of life), but we found no such decrease in later years. Moreover, in healthy adults, subject-to-subject variability was relevant in changes due to iron deposition in magnetic resonance imaging. We found increased signal loss to be associated with poor performance on motor and specific cognitive tasks, suggesting that these image changes can provide functional information with respect to the brain in normal subjects. References 1. Wrigglesworth JM, Baum H. Iron-dependent enzymes in the brain . In: Youdim MBH, ed. Brain-Iron: Neurochemical and Behavioural Aspects . London, England: Taylor & Francis Ltd; 1988:24-65. 2. Gerber MR, Connor JR. Do oligodendrocytes mediate iron regulation in the human brain? Ann Neurol . 1989;26:95-98.Crossref 3. Taylor EM, Morgan EH. Developmental changes in transferrin and iron uptake by the brain in the rat . Dev Brain Res . 1990;55:35-42.Crossref 4. Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain . J Neurochem . 1958;3:41-51.Crossref 5. Swaiman KF, Machen VL. Iron uptake by mammalian cortical neurons . Ann Neurol . 1984;16:66-70.Crossref 6. Youdim MBH, Ben-Shachar D, Riederer P. Is Parkinson's disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand . 1989;126:47-54.Crossref 7. Park BE, Netsky MG, Betsill WL. Pathogenesis of pigment and spheroid formation in Hallervorden-Spatz syndrome and related disorders . Neurology . 1975;25:1172-1178.Crossref 8. Drayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA. MRI of brain iron . AJR Am J Roentgenol . 1986;147:103-110.Crossref 9. Campbell WG, Raskind MA, Gordon T, Shaw CM. Iron pigment in the brain of a man with tardive dyskinesia . Am J Psychiatry . 1985;142:364-365. 10. Bizzi A, Brooks RA, Brunetti A, et al. Role of iron and ferritin in MR imaging of the brain: a study in primates at different field strengths . Radiology . 1990;177:59-65.Crossref 11. Lear JL. Principles of single and multiple radionuclide autoradiography . In: Phelps M, Mazziotta J, Schelbert H, eds. Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart . New York, NY: Raven Press; 1986:197-235. 12. Stark DD, Bass NM, Moss AA, et al. Nuclear magnetic resonance imaging of experimentally induced liver disease . Radiology . 1983;148:743-751.Crossref 13. Breger RK, Rimm AA, Fischer ME, Papke RA, Haughton VM. T1 and T2 measurements on a 1.5-T commercial MR imager . Radiology . 1989;171:273-276.Crossref 14. Schuhfried G. The PC/S Vienna Test System, Version 1.9 . Vienna, Austria: Kuratorium für Verkehrssicherheirt; 1988. 15. Lezak MD. Neuropsychological Assessment . New York, NY: Oxford University Press Inc; 1983. 16. Brown RG, Marsden CD. Dual task performance and processing resources in normal subjects and patients with Parkinson's disease . Brain . 1991;114:215-231. 17. Stroop JR. Studies of interference in serial verbal reactions . J Exp Psychol . 1935;18:643-662.Crossref 18. Cohen NJ, Squire LR. Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that . Science . 1980;210:207-210.Crossref 19. Martone M, Butters N, Payne M, Becker JT, Sax DS. Dissociations between skill learning and verbal recognition in amnesia and dementia . Arch Neurol . 1984;41:965-970.Crossref 20. Hasher L, Zacks RT. Automatic and effortful processes in memory . J Exp Psychol . 1979;108:356-388.Crossref 21. Brown J. Some tests of the decay theory of immediate memory . QJ Exp Psychol . 1958;10:12-21.Crossref 22. Peterson LR, Peterson MJ. Short-term retention of individual verbal items . J Exp Psychol . 1959;58:193-198.Crossref 23. Aoki S, Okada Y, Nishimura K, et al. Normal deposition of brain iron in childhood and adolescence: MR imaging at 1.5 T . Radiology . 1989;172:381-385.Crossref 24. Rutledge JN, Hilal SK, Silver AJ, Defendini R, Fahn S. Study of movement disorders and brain iron by MR . AJR Am J Roentgenol . 1987;149:365-379.Crossref 25. Moseley ME, Nishimura MC, Pitts LH, Bartkowski HM, James TL. Proton nuclear magnetic resonance spectroscopy of normal and edematous brain tissue in vitro: changes in relaxation during tissue storage . Magn Reson Imaging . 1984;2:205-209.Crossref 26. Drayer BP. Basal ganglia: significance of signal hypointensity on T2-weighted MR images . Radiology . 1989;173:311-312.Crossref 27. Chen JC, Hardy PA, Clauberg M, et al. T2 values in the human brain: comparison with quantitative assays of iron and ferritin . Radiology . 1989;173:521-526.Crossref 28. Brooks DJ, Luthert P, Gadian D, Marsden CD. Does signal-attenuation on high-field T2-weighted MRI of the brain reflect regional cerebral iron deposition? observations on the relationship between regional cerebral water proton T2 values and iron levels . J Neurol Neurosurg Psychiatry . 1989;52:108-111.Crossref 29. Smith CB. Aging and changes in cerebral energy metabolism . Trends Neurosci . 1984;7:203-208.Crossref 30. Barbeau A. Parkinson's disease: clinical features and etiopathology . In: Vinken PJ, Bruyn GW, Klawans HL, eds. Handbook of Clinical Neurology . New York, NY: Elsevier Science Publishing Co Inc; 1986;5:87-152. 31. Tucker DM, Sandstead HH, Penland JG, Dawson SL, Milne DB. Iron status and brain function: serum ferritin levels associated with asymmetries of cortical electrophysiology and cognitive performance . Am J Clin Nutr . 1984;38:105-113. 32. Brittenham GM, Farrell DE, Harris JW, et al. Magnetic-susceptibility measurement of human iron stores . N Engl J Med . 1982;307:1671-1675.Crossref 33. Kaltwasser JP, Gottschalk R, Schalk KP, Hartl W. Non-invasive quantitation of liver iron-overload by magnetic resonance imaging . Br J Haematol . 1990;74:360-363.Crossref 34. Sethi KD, Adams RJ, Loring DW, El Gammal T. Hallervorden-Spatz syndrome: clinical and magnetic resonance imaging correlations . Ann Neurol . 1988;24:692-694.Crossref 35. Drayer BP, Olanow W, Burger P, Johnson JT, Herfkens R, Riederer S. Parkinson plus syndrome: diagnosis using high field MR imaging of brain iron . Radiology . 1986;159:493-498.Crossref 36. Pastakia B, Polinsky R, Di Chiro G, Simmons JT, Brown R, Wener L. Multiple system atrophy (Shy-Drager syndrome): MR imaging . Radiology . 1986;159:499-502.Crossref 37. Drayer B, Burger P, Hurwitz B, Dawson D, Cain J. Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content? AJNR Am J Neuroradiol . 1987;8:413-419. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Neurology American Medical Association

Biological Significance of Iron-Related Magnetic Resonance Imaging Changes in the Brain

Loading next page...
 
/lp/american-medical-association/biological-significance-of-iron-related-magnetic-resonance-imaging-j90RuZuUlE
Publisher
American Medical Association
Copyright
Copyright © 1992 American Medical Association. All Rights Reserved.
ISSN
0003-9942
eISSN
1538-3687
DOI
10.1001/archneur.1992.00530310053012
Publisher site
See Article on Publisher Site

Abstract

Abstract • Iron, an essential element for basic cellular metabolism, regularly accumulates in certain brain areas in normal subjects and in patients with certain diseases. Magnetic resonance imaging can depict iron deposition, offering a singular opportunity to correlate the regional iron content with the functional status of the human brain in vivo. We studied the relationship between age and the iron-related signal loss on T2-weighted images in basal ganglia, and observed a strongly significant signal decrease in the globus pallidus at the age of brain development (first two decades of life), but we found no such decrease in later years. Moreover, in healthy adults, subject-to-subject variability was relevant in changes due to iron deposition in magnetic resonance imaging. We found increased signal loss to be associated with poor performance on motor and specific cognitive tasks, suggesting that these image changes can provide functional information with respect to the brain in normal subjects. References 1. Wrigglesworth JM, Baum H. Iron-dependent enzymes in the brain . In: Youdim MBH, ed. Brain-Iron: Neurochemical and Behavioural Aspects . London, England: Taylor & Francis Ltd; 1988:24-65. 2. Gerber MR, Connor JR. Do oligodendrocytes mediate iron regulation in the human brain? Ann Neurol . 1989;26:95-98.Crossref 3. Taylor EM, Morgan EH. Developmental changes in transferrin and iron uptake by the brain in the rat . Dev Brain Res . 1990;55:35-42.Crossref 4. Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain . J Neurochem . 1958;3:41-51.Crossref 5. Swaiman KF, Machen VL. Iron uptake by mammalian cortical neurons . Ann Neurol . 1984;16:66-70.Crossref 6. Youdim MBH, Ben-Shachar D, Riederer P. Is Parkinson's disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand . 1989;126:47-54.Crossref 7. Park BE, Netsky MG, Betsill WL. Pathogenesis of pigment and spheroid formation in Hallervorden-Spatz syndrome and related disorders . Neurology . 1975;25:1172-1178.Crossref 8. Drayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA. MRI of brain iron . AJR Am J Roentgenol . 1986;147:103-110.Crossref 9. Campbell WG, Raskind MA, Gordon T, Shaw CM. Iron pigment in the brain of a man with tardive dyskinesia . Am J Psychiatry . 1985;142:364-365. 10. Bizzi A, Brooks RA, Brunetti A, et al. Role of iron and ferritin in MR imaging of the brain: a study in primates at different field strengths . Radiology . 1990;177:59-65.Crossref 11. Lear JL. Principles of single and multiple radionuclide autoradiography . In: Phelps M, Mazziotta J, Schelbert H, eds. Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart . New York, NY: Raven Press; 1986:197-235. 12. Stark DD, Bass NM, Moss AA, et al. Nuclear magnetic resonance imaging of experimentally induced liver disease . Radiology . 1983;148:743-751.Crossref 13. Breger RK, Rimm AA, Fischer ME, Papke RA, Haughton VM. T1 and T2 measurements on a 1.5-T commercial MR imager . Radiology . 1989;171:273-276.Crossref 14. Schuhfried G. The PC/S Vienna Test System, Version 1.9 . Vienna, Austria: Kuratorium für Verkehrssicherheirt; 1988. 15. Lezak MD. Neuropsychological Assessment . New York, NY: Oxford University Press Inc; 1983. 16. Brown RG, Marsden CD. Dual task performance and processing resources in normal subjects and patients with Parkinson's disease . Brain . 1991;114:215-231. 17. Stroop JR. Studies of interference in serial verbal reactions . J Exp Psychol . 1935;18:643-662.Crossref 18. Cohen NJ, Squire LR. Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that . Science . 1980;210:207-210.Crossref 19. Martone M, Butters N, Payne M, Becker JT, Sax DS. Dissociations between skill learning and verbal recognition in amnesia and dementia . Arch Neurol . 1984;41:965-970.Crossref 20. Hasher L, Zacks RT. Automatic and effortful processes in memory . J Exp Psychol . 1979;108:356-388.Crossref 21. Brown J. Some tests of the decay theory of immediate memory . QJ Exp Psychol . 1958;10:12-21.Crossref 22. Peterson LR, Peterson MJ. Short-term retention of individual verbal items . J Exp Psychol . 1959;58:193-198.Crossref 23. Aoki S, Okada Y, Nishimura K, et al. Normal deposition of brain iron in childhood and adolescence: MR imaging at 1.5 T . Radiology . 1989;172:381-385.Crossref 24. Rutledge JN, Hilal SK, Silver AJ, Defendini R, Fahn S. Study of movement disorders and brain iron by MR . AJR Am J Roentgenol . 1987;149:365-379.Crossref 25. Moseley ME, Nishimura MC, Pitts LH, Bartkowski HM, James TL. Proton nuclear magnetic resonance spectroscopy of normal and edematous brain tissue in vitro: changes in relaxation during tissue storage . Magn Reson Imaging . 1984;2:205-209.Crossref 26. Drayer BP. Basal ganglia: significance of signal hypointensity on T2-weighted MR images . Radiology . 1989;173:311-312.Crossref 27. Chen JC, Hardy PA, Clauberg M, et al. T2 values in the human brain: comparison with quantitative assays of iron and ferritin . Radiology . 1989;173:521-526.Crossref 28. Brooks DJ, Luthert P, Gadian D, Marsden CD. Does signal-attenuation on high-field T2-weighted MRI of the brain reflect regional cerebral iron deposition? observations on the relationship between regional cerebral water proton T2 values and iron levels . J Neurol Neurosurg Psychiatry . 1989;52:108-111.Crossref 29. Smith CB. Aging and changes in cerebral energy metabolism . Trends Neurosci . 1984;7:203-208.Crossref 30. Barbeau A. Parkinson's disease: clinical features and etiopathology . In: Vinken PJ, Bruyn GW, Klawans HL, eds. Handbook of Clinical Neurology . New York, NY: Elsevier Science Publishing Co Inc; 1986;5:87-152. 31. Tucker DM, Sandstead HH, Penland JG, Dawson SL, Milne DB. Iron status and brain function: serum ferritin levels associated with asymmetries of cortical electrophysiology and cognitive performance . Am J Clin Nutr . 1984;38:105-113. 32. Brittenham GM, Farrell DE, Harris JW, et al. Magnetic-susceptibility measurement of human iron stores . N Engl J Med . 1982;307:1671-1675.Crossref 33. Kaltwasser JP, Gottschalk R, Schalk KP, Hartl W. Non-invasive quantitation of liver iron-overload by magnetic resonance imaging . Br J Haematol . 1990;74:360-363.Crossref 34. Sethi KD, Adams RJ, Loring DW, El Gammal T. Hallervorden-Spatz syndrome: clinical and magnetic resonance imaging correlations . Ann Neurol . 1988;24:692-694.Crossref 35. Drayer BP, Olanow W, Burger P, Johnson JT, Herfkens R, Riederer S. Parkinson plus syndrome: diagnosis using high field MR imaging of brain iron . Radiology . 1986;159:493-498.Crossref 36. Pastakia B, Polinsky R, Di Chiro G, Simmons JT, Brown R, Wener L. Multiple system atrophy (Shy-Drager syndrome): MR imaging . Radiology . 1986;159:499-502.Crossref 37. Drayer B, Burger P, Hurwitz B, Dawson D, Cain J. Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content? AJNR Am J Neuroradiol . 1987;8:413-419.

Journal

Archives of NeurologyAmerican Medical Association

Published: Jul 1, 1992

References