Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Association of Serum Folate Levels With Cardiovascular Mortality Among Adults With Rheumatoid Arthritis

Association of Serum Folate Levels With Cardiovascular Mortality Among Adults With Rheumatoid... Key Points Question Are serum folate levels IMPORTANCE Patients with rheumatoid arthritis (RA) are at high risk for cardiovascular (CV) associated with cardiovascular mortality mortality, attributed to chronic inflammation coupled with elevated circulatory homocysteine levels. risk among adults with rheumatoid Increasing the serum folate level reduces homocysteine, but the association of serum folate arthritis (RA)? concentration with CV mortality in patients with RA has not been previously examined. Findings In this cohort study including 683 patients with RA, those with serum OBJECTIVE To examine the association of serum folate concentration and CV mortality risk among folate levels between 4.3 and 8.2 ng/mL patients with RA. and greater than 8.2 ng/mL had 48% and 56% lower cardiovascular mortality DESIGN, SETTING, AND PARTICIPANTS A cohort study of the third National Health and Nutrition risk, respectively, compared with Examination Survey (1988-1994) and 2011 Linked Mortality File was performed. Adults aged 18 years patients who had serum folate levels or older with self-reported physician-diagnosed RA were included. Data analysis was performed less than 4.3 ng/mL after adjusting for between April 2019 and June 2019. demographic characteristics, body mass index, C-reactive protein level, smoking, EXPOSURE Serum folate level. RA medication use, and comorbid conditions. MAIN OUTCOMES AND MEASURES All-cause and CV mortality risk estimated using Cox proportional hazards models, adjusted for the complex survey design and patient characteristics, Meaning In this study, serum folate including demographic characteristics, body mass index, C-reactive protein level, smoking, RA levels of at least 4.3 ng/mL were medication use, and comorbid conditions. associated with lower cardiovascular mortality risk among patients with RA. RESULTS A total of 683 patients with RA (mean [SE] age, 55.9 [1.0] years; 225 [30.2%] men; 478 [87.0%] white) were classified into tertiles based on serum folate levels, as follows: tertile 1, folate Supplemental content levels less than 4.3 ng/mL (n = 239); tertile 2, folate levels 4.3 ng/mL to 8.2 ng/mL (n = 234); and tertile 3, folate levels greater than 8.2 ng/mL (n = 210). During a median (interquartile range) Author affiliations and article information are listed at the end of this article. follow-up of 17.4 (10.0-19.4) years, a total of 392 all-cause deaths and 258 CV deaths occurred. Compared with tertile 1, patients in tertile 2 had lower all-cause mortality risk (hazard ratio [HR], 0.63; 95% CI, 0.47-0.85). The risk of CV mortality was lower among patients in tertile 2 (HR, 0.52; 95% CI, 0.30-0.92) and tertile 3 (HR, 0.44; 95% CI, 0.26-0.75) compared with those in tertile 1 (P for trend = .01). Findings for CV mortality were consistent in a sensitivity analysis that estimated 10-year risk; patients in tertile 2 (HR, 0.31; 95% CI, 0.17-0.57) and tertile 3 (HR, 0.39; 95% CI, 0.22-0.69) had lower CV mortality risk compared with those in tertile 1 (P for trend = .04). CONCLUSIONS AND RELEVANCE Among patients with RA, a serum folate level of at least 4.3 ng/mL was associated with lower CV mortality risk. Further research is needed to examine whether a causal relationship exists between serum folate and CV risk among patients with RA. JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 Open Access. This is an open access article distributed under the terms of the CC-BY License. JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 1/11 JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis Introduction The risk of cardiovascular (CV) mortality among individuals with rheumatoid arthritis (RA) is 60% greater than among the general population. The etiological reason for increased CV mortality among patients with RA remains unexplained; however, a possible explanation is that increased 2-4 homocysteine (an established CV risk factor) resulting from chronic systemic inflammation may 5-8 potentially lead to increased CV mortality. Folic acid, or folate, is an essential nutrient that has a homocysteine-lowering effect. Folate deficiency is common among patients with autoimmune 9-11 diseases, including RA, and it is also a well-documented adverse effect of the disease-modifying 10,12 antirheumatic drug methotrexate. To counteract reduced folate levels, folate supplements are 13-16 recommended to patients with RA. Among patients with RA, an inverse association between serum folate level and homocysteine has been reported. However, to our knowledge, no published study has examined the association of serum folate levels with long-term CV outcomes. The objective of this study was to determine the association of serum folate levels with CV mortality among patients with RA. Using the third National Health and Nutrition Examination Survey, 1988 to 1994 (NHANES III) and linked mortality data, we examined whether optimal serum folate levels were associated with lower CV mortality risk in adults with RA. Methods Data Source and Study Design This is a cohort study of the NHANES III, which contains information from 33 994 US residents aged 2 months or older. The NHANES is a complex, stratified, multistage probability sample of noninstitutionalized US civilians. The survey collects information on demographic characteristics, socioeconomic status, and health conditions and behaviors, which are administered through a personal or telephone interview. Physiologic, dental, and laboratory examinations are included in the survey; these are conducted by trained medical professionals in mobile examination centers (MECs). A detailed description of the NHANES is available elsewhere. For this study, we merged the NHANES III with the 2011 National Center for Health Statistics Linked Mortality Files. The institutional review board of the University of Texas Health Science Centre at Houston deemed this study exempt from review and informed consent because it uses publicly available deidentified data. This report followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline. Cohort Identification We identified adults aged 18 years or older with a self-reported diagnosis of RA. Self-reported data on medical conditions were collected at the MEC through a standardized questionnaire. Participants were asked, “Has a doctor ever told you that you have arthritis?” Those who responded yes were further asked, “Which type of arthritis was it?” Our cohort was restricted to participants who responded that they were diagnosed with rheumatoid arthritis. We excluded participants who were pregnant during the interview and those with missing data. Specimen Collection and Laboratory Methods Blood specimens of participants were collected in the MEC by trained laboratory technicians, and frozen specimens were shipped overnight per protocol. The NHANES III examined both serum and red blood cell folate values. We used the serum folate value because it is influenced by fewer analytical variables and it shows a higher correlation with homocysteine compared with red blood 19,20 cell folate. Serum folate levels were measured using the Bio-Rad Laboratories Quantaphase Folate radioassay kit. The assay consists of the preparation of labeled 12 × 75 mm tubes in duplicate for each blank, standard, control, and patient sample. Standard manual procedures, as outlined by JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 2/11 JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis the manufacturer for the instrument, were followed. Reportable values for serum folate ranged from 0.4 to 199.0 ng/mL (to convert to nanomoles per liter, multiply by 2.266). We also evaluated C-reactive protein (CRP) levels as a biomarker for inflammation. The CRP assay was performed on a Behring nephelometer analyzer system. Samples were centrifuged at 3000 rpm for 15 minutes and transferred to a fully automated nephelometer analyzer. Results were automatically printed and calculated by the nephelometer analyzer when the tests were completed. Reportable values for CRP in the NHANES III were between 0.03 mg/L to 2.52 mg/L (to convert to nanomoles per liter, multiply by 9.524). Participants with undetectable values were labeled accordingly. The NHANES III defined normal CRP values as 0 mg/dL to 0.1 mg/L in normal healthy adults based on in-house testing of a sample of 300 patients. For this study, we classified CRP level into the 3 following categories: undetectable (<0.03 mg/L), 0.03 mg/L to 0.1 mg/L, and greater than 0.1 mg/L. Serum homocysteine (HCYS) levels were analyzed using residual serum samples. The samples were reduced using tributylphosphine to disassociate HCYS from nonrelevant proteins and other disulfides, followed by acid precipitation and the addition of 7-fluorobenzo-2-oxa-1,3-diazole-4- sulfonic acid, a fluorescent reagent. Subsequently, reverse-phase high-performance liquid chromatography and fluorescence detection were used to quantify HCYS. Values for HCYS in the NHANES III ranged from 0.27 mg/L to 17.8 mg/L (to convert to micromoles per liter, multiply by 7.397). Demographic and Clinical Characteristics Demographic data, including age at the time of the interview, sex, and race/ethnicity, were collected through a standard questionnaire administered in-home by trained interviewers using a computer- assisted personal interviewing system. Body mass index (calculated as weight in kilograms divided by height in meters squared) was calculated for each participant based on body measurements collected at the MEC. A detailed questionnaire regarding tobacco use was also administered. We identified participants as current smokers if they responded yes to the question, “Do you smoke cigarettes now?” Hypertension, diabetes, and cardiovascular diseases (CVDs) were also self- reported. For the purpose of this study, we identified participants with CVD as those who responded yes to the questions, “Has a doctor ever told you that you had congestive heart failure?” or “Has a doctor ever told you that you had stroke?” or “Has a doctor ever told you that you had heart attack?” A similar case definition for CVD was used in a previously published report. Prescription Drug and Dietary Supplement Use During the survey, participants were asked if they had taken any prescription drugs and dietary supplements during the past 30 days. Participants who answered yes provided containers of medications and dietary supplements to a trained professional who then matched the product using a prescription drug database (Lexicon Plus; Cerner Multum) and a dietary supplement database (Supliden; National Center for Health Statistics). Information regarding the strength, dosage form, and duration of use was recorded for each medication, provided by the participant. Similarly, information on the dietary blend, strength, and duration of use was recorded for all dietary supplements. We used prescription drug use data to identify patients who reported that they were using disease-modifying antirheumatic drugs, steroids, or nonsteroidal antiinflammatory drugs. Similarly, we used dietary supplement data to identify patients who consumed a dietary supplement containing folic acid. Mortality Data The 2011 National Center for Health Statistics Linked Mortality File consists of mortality information (including mortality status, cause of death, and follow-up time) of NHANES III participants from the date of survey participation until death or December 31, 2011. The Linked Mortality File consists of a leading cause of death variable, which includes 9 cause-specific death categories based on the JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 3/11 JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis International Classification of Diseases, Ninth Revision (ICD-9) (through 1999) or ICD-10 (after 1999) code reported on the participant’s death certificate. We defined all-cause mortality as death because of any reason, while CV mortality included deaths reportedly due to a CVD (ie, leading cause of death code 001 or 005). Statistical Analysis We used descriptive statistics to summarize the characteristics of the entire RA cohort and by tertiles of serum folate level. Frequencies and means were estimated for categorical and continuous variables, respectively. Differences in patient characteristics by serum folate tertiles were tested for statistical significance using an analysis of variance for continuous variables and a χ test for categorical variables. The distribution of numbers of patients in the 3 CRP categories was determined and compared using a χ test. Cox proportional hazards models were used to estimate the risk of all-cause and cause-specific (ie, CV) mortality. The models were adjusted for several potential confounding variables including sex, body mass index, CRP value, and use of steroid or nonsteroid 24-29 anti-inflammatory drug, based on prior studies. We calculated tests of trend with the median folate concentration in each tertile as an ordinal variable. The analyses were repeated for the subgroups of patients without CVD and diabetes. Statistical significance was tested at P < .05, and all tests were 2-tailed. All analyses were conducted per the NHANES III analytical guidelines and were performed with SAS version 9.4 (SAS Institute). We used the survey procedures in SAS, which included weight, cluster, and strata statements, to incorporate sampling weights and to account for the complex survey design. Data analysis was performed between April 2019 and June 2019. Results After applying study criteria, the final cohort included a total of 683 patients with RA (mean [SE] age, 55.9 [1.0] years; 225 [30.2%] men; 478 [87.0%] white); 239 (35.0%) belonged in tertile 1 (ie, folate level <4.3 ng/mL), 234 (34.3%) in tertile 2 (ie, folate level 4.3-8.2 ng/mL), and 210 (30.7%) in tertile 3 (ie, folate level >8.2 ng/mL). The total follow-up duration was 23 years (median [interquartile range], 17.4 [10.0-19.4] years). The study flow is illustrated in eFigure 1 in the Supplement. Patient Characteristics Characteristics of the overall RA cohort and the comparison of patients by folate tertiles are presented in Table 1. Age, race, smoking status, serum HCYS, disease-modifying antirheumatic drug use, and folic acid supplement use were significantly different by serum folate tertiles (eg, mean [SD] age: 52.3 [1.4] years in tertile 1 vs 55.6 [2.0] years in tertile 2 vs 59.4 [1.7] years in tertile 3; P = .005; current smokers: 142 [68.0%] in tertile 1 vs 113 [53.2%] in tertile 2 vs 102 [53.4%] in tertile 3; P = .04; disease-modifying antirheumatic drug use: 7 [3.5%] in tertile 1 vs 9 [1.9%] in tertile 2 vs 11 [8.0%] in tertile 3; P = .03). There was no significant difference in the mean CRP level for 313 patients in detectable range (Table 1), and the distribution of patients in undetectable and detectable ranges of CRP level within each folate tertile was also not significantly different (tertile 1: undetectable CRP levels, 114 [48.6%];0.1 mg/L, 71 [31.7%]; >0.1 mg/L, 54 [19.7%]; tertile 2: undetectable CRP levels, 141 [63.9%]; 0.1 mg/L, 55 [22.8%]; >0.1 mg/L, 38 [13.4%]; tertile 3: undetectable CRP levels, 115 [55.7%];0.1 mg/L, 62 [25.7%]; >0.1 mg/L, 33 [18.6%]; P = .23) (Figure 1). All-Cause and Cardiovascular Mortality A total of 392 all-cause and 258 CV deaths occurred during the follow-up period. The unadjusted and adjusted results for all-cause and CV mortality risk are presented in Table 2. The risk of all-cause mortality was significantly lower among patients with RA in tertile 2 compared with those in tertile 1 (adjusted hazard ratio [aHR], 0.63; 95% CI, 0.47-0.85). The risk of CV mortality was significantly lower among patients in tertile 2 vs tertile 1 (aHR, 0.52; 95% CI, 0.30-0.92) and among patients in tertile 3 vs tertile 1 (aHR, 0.44; 95% CI, 0.26-0.75) (P for trend = .01). The cumulative incidence JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 4/11 JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis curves are presented in Figure 2. Factors associated with all-cause and CV mortality in patients with RA are presented in eTable 1 in the Supplement. To examine the robustness of the mortality risk estimates, we conducted a sensitivity analysis by restricting patient follow-up to 10 years. Findings of the sensitivity analysis were consistent with our main analysis. All-cause mortality risk was significantly lower among patients with RA in tertile 2 vs tertile 1 but not among patients in tertile 3 vs tertile 1 (tertile 2: aHR, 0.60; 95% CI, 0.37-0.97; tertile 3: aHR, 0.66; 95% CI, 0.41-1.07; P for trend = .20). Patients with RA in tertile 2 (aHR, 0.31; 95% CI, 0.17-0.57) and tertile 3 (aHR, 0.39; 95% CI, 0.22-0.69) had significantly lower CV mortality risk than those in tertile 1 (P for trend = .04) (eTable 2 in the Supplement). Table 1. Characteristics of Patients With Rheumatoid Arthritis by Serum Folate Tertile From the Third National Health and Nutrition Survey, 1988-1994 No. (%) Total Folate Tertile 1 Folate Tertile 2 Folate Tertile 3 a a a b Characteristic (N = 683) (n = 239) (n = 234) (n = 210) P Value Age, mean (SE), y 55.86 (1.02) 52.33 (1.36) 55.62 (1.99) 59.42 (1.68) .005 Men 225 (30.2) 80 (36.8) 82 (31.9) 63 (22.4) .17 White 478 (87.0) 140 (80.3) 167 (88.0) 171 (92.3) <.001 Body mass index, mean (SE) 27.88 (0.27) 28.92 (0.53) 27.32 (0.61) 27.45 (0.59) .14 C-reactive protein, mean (SE), mg/dL 1.23 (0.09) 1.32 (0.17) 1.13 (0.12) 1.21 (0.16) .62 Serum homocysteine, mean (SE), mg/L 1.34 (0.06) 1.75 (0.09) 1.33 (0.07) 1.08 (0.06) <.001 Current smoker 357 (58.1) 142 (68.0) 113 (53.2) 102 (53.4) .04 DMARD use 27 (4.5) 7 (3.5) 9 (1.9) 11 (8.0) .03 Steroid use 37 (6.0) 15 (7.1) 9 (3.1) 13 (7.9) .25 NSAID use 171 (23.9) 57 (27.9) 61 (21.0) 53 (23.0) .25 Folic acid supplement use 179 (32.2) 29 (11.7) 33 (17.8) 117 (65.3) <.001 Cardiovascular disease 131 (14.8) 43 (14.8) 43 (12.5) 45 (17.0) .63 Diabetes 107 (12.5) 24 (9.8) 37 (11.2) 46 (15.9) .23 Hypertension 301 (37.3) 100 (39.1) 101 (38.7) 100 (34.3) .65 Abbreviations: DMARD, disease-modifying antirheumatic drug; NSAID, nonsteroidal anti- P value represents National Health and Nutrition Examination Survey weight-adjusted inflammatory drug. analysis of variance for continuous variables and χ test for categorical variables. SI conversion factors: To convert C-reactive protein to nanomoles per liter, multiply by Body mass index was calculated as weight in kilograms divided by height in 9.524; homocysteine to micromoles per liter, multiply by 7.397; folate to nanomoles per meters squared. liter, multiply by 2.266. Mean values for 313 patients in detectable range for laboratory assay. Tertile 1 defined as patients with folate levels less than 4.3 ng/mL; tertile 2, 4.3 to 8.2 e Mean values for 355 patients with nonmissing data for serum homocysteine. ng/mL; and tertile 3, greater than 8.2 ng/mL. Figure 1. Distribution of C-reactive Protein (CRP) Values in 313 Patients With Rheumatoid Arthritis by Serum Folate Tertile From the Third National Health and Nutrition Survey, 1988-1994 CRP value Undetectable ≤0.1 mg/L >0.1 mg/L The χ test value for the difference in the proportion of 60 patients according to CRP was not statistically significant (P = .23). The mean CRP values were 1.32 mg/dL among patients in folate tertile 1 (ie, folate levels <4.3 ng/mL), 1.13 mg/dL among patients in folate tertile 2 (ie, folate levels 4.3-8.2 ng/mL), and 1.22 mg/dL among patients in folate tertile 3 (ie, folate levels >8.2 ng/mL). To convert C-reactive protein to nanomoles per liter, multiply by 9.524; to convert Tertile 1 Tertile 2 Tertile 3 folate to nanomoles per liter, multiply by 2.266. JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 5/11 Patients With Rheumatoid Arthritis, % JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis Subgroup Analyses The main analyses were repeated in the subgroup of patients with RA but no CVD at baseline (Table 3). Compared with patients in tertile 1, all-cause mortality risk was lower for patients with RA in tertile 2 (aHR, 0.48; 95% CI, 0.33-0.71) and tertile 3 (aHR, 0.72; 95% CI, 0.54-0.96; P for trend = .42), but the test for trend was not significant. Similarly, the risk of CV mortality was lower for patients with RA in tertile 2 (aHR, 0.42; 95% CI, 0.22-0.78) and tertile 3 (aHR, 0.44; 95% CI, 0.25- 0.80) compared with those in tertile 1, but the test for trend was not significant (P for trend = .051). Results for the subgroup of RA patients without diabetes at baseline are also presented in Table 3. All-cause mortality risk was lower for patients in tertile 2 vs tertile 1 (aHR, 0.64; 95% CI, 0.45-0.92) than among patients in tertile 3 vs tertile 1 (aHR = 0.72; 95% CI, 0.53-0.99) (P for trend = .17). The risk of CV mortality was lower among patients in tertile 3 vs tertile 1 (aHR = 0.48; 95% CI, 0.25-0.91) (P for trend = .04). Comparisons of characteristics by serum folate tertile for the RA subgroups without CVD and diabetes are presented in eTable 3 and e Table 4 in the Supplement, respectively. The cumulative incidence curves for all-cause and CV mortality in these RA subgroups are illustrated in eFigure 2 and eFigure 3 in the Supplement. Table 2. Mortality Risk Among Patients With Rheumatoid Arthritis by Serum Folate Tertile Abbreviations: HR, hazard ratio; NA, not applicable. From the Third National Health and Nutrition Examination Survey, 1988-1994 a Tertile 1 includes patients with folate levels less than 4.3 ng/mL; tertile 2, 4.3 to 8.2 ng/mL; and tertile 3, a a a Overall Folate Tertile 1 Folate Tertile 2 Folate Tertile 3 P for Trend greater than 8.2 ng/mL (to convert to nmol/L, All-cause mortality multiply by 2.266). Models were adjusted for No. with events/No. at risk (%) 121/239 (50.6) 129/234 (55.1) 142/210 (67.6) NA National Health and Nutrition Examination Unadjusted HR (95% CI) 1 [Reference] 0.81 (0.56-1.17) 1.13 (0.83-1.54) .82 Survey weights. Adjusted HR (95% CI) 1 [Reference] 0.63 (0.47-0.85) 0.74 (0.54-1.03) .99 b Hazard ratio adjusted for age, sex, race, C-reactive Cardiovascular mortality protein value, body mass index, smoking, disease- modifying antirheumatic drug use, steroid use, No. with events/No. at risk (%) 81/239 (33.9) 81/234 (34.6) 96/210 (45.7) NA nonsteroidal anti-inflammatory drug use, and history Unadjusted HR (95% CI) 1 [Reference] 0.78 (0.41-1.51) 0.78 (0.44-1.40) .99 of hypertension, diabetes, and Adjusted HR (95% CI) 1 [Reference] 0.52 (0.30-0.92) 0.44 (0.26-0.75) .01 cardiovascular disease. Figure 2. Cumulative Incidence Curves for All-Cause and Cardiovascular Mortality Risk Among Patients With Rheumatoid Arthritis by Serum Folate Tertile From the Third National Health and Nutrition Survey, 1988-1994 A All-cause mortality B Cardiovascular mortality 50 50 Tertile 1 Tertile 2 40 40 Tertile 3 30 30 20 20 10 10 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Time, Years Time, Years No. at risk Tertile 1 239 210 178 140 52 0 239 210 178 140 52 0 Tertile 2 234 208 171 131 39 0 234 208 171 131 39 0 Tertile 3 210 172 138 92 25 0 210 172 138 92 25 0 Cumulative incidence curves were adjusted for age, sex, race, body mass index, diabetes, and cardiovascular disease diagnoses. Tertile 1 includes patients with folate C-reactive protein value, smoking status, disease-modifying antirheumatic drug use, levels less than 4.3 ng/mL; tertile 2, 4.3 to 8.2 ng/mL; and tertile 3, greater than 8.2 steroid use, nonsteroidal anti-inflammatory drug use, and existing hypertension, ng/mL. To convert folate to nanomoles per liter, multiply by 2.266. JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 6/11 All-Cause Mortality Probability, % Cardiovascular Mortality Probability, % JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis Discussion To our knowledge, our study was the first to examine the association of serum folate level with CV mortality risk among adults with RA. We found that patients with RA and serum folate levels less than 4.3 ng/mL had nearly 50% higher CV mortality risk compared with those with serum folate levels of at least 4.3 ng/mL. Data specific to the RA population are unavailable; however, 2 previous studies of 31,32 the general, non-RA population have reported increased CV risk with low serum folate levels. In the study by Morrison et al, participants with serum folate levels less than 3.0 ng/mL had higher risks of coronary heart disease compared with those with serum folate levels greater than 6.0 ng/mL (relative risk, 1.69; 95% CI, 1.10-2.61). Similarly, Loria et al reported an increased CV mortality risk among participants with serum folate levels less than 4.2 ng/mL compared with those with serum folate levels greater than 7.4 ng/mL (relative risk, 2.64; 95% CI, 1.15-6.09). Furthermore, in a previously published study, patients with RA using supplements containing folate had lower odds of CVD compared with those not receiving folate supplementation (odds ratio, 0.15; 95% CI, 0.06-0.42). The diagnosis of CVD is an intermediate end point, unlike mortality. Nonetheless, the lower odds of CVD corroborates the findings of the current study, ie, higher serum folate levels were associated with lower CV mortality risk. Several studies have found an association between folate supplementation, circulating folate concentration, and CVD. The literature on serum folate supplementation provides indirect evidence of the association of serum folate level with CV mortality risk. While a 2006 meta-analysis reported no CVD or all-cause mortality benefits of folate supplementation in patients with history of vascular disease, a 2016 meta-analysis reported a 4% lower risk of CVD among patients with preexisting CV or renal diseases. The heterogeneity of cohorts may have led to the discrepancies in CV outcomes observed in these studies. We conducted a subgroup analysis restricted to participants without CVD and diabetes to examine effect modification in our study. Regardless of preexisting CVD or diabetes, patients with RA and serum folate levels less than 4.3 ng/mL in our study had a high risk of CV mortality. Our findings suggest that serum folate levels are associated with CV risk among patients with RA regardless of existing diabetes and CVD. It is unclear why higher folic acid concentrations would be associated with lower CV mortality risk among patients with RA. A possible explanation is that serum folate lowers CV risk through HCYS 36,37 reduction. Serum folate levels and plasma homocysteine have an inverse relationship. Empirical studies have reported a successful reduction in HCYS levels among patients with RA supplemented Table 3. Mortality Risk Among Patients With Rheumatoid Arthritis but No CVD or Diabetes From the Third National Health and Nutrition Survey, 1988-1994 HR (95% CI) a a a Subgroup Folate Tertile 1 Folate Tertile 2 Folate Tertile 3 P for Trend No CVD All-cause mortality 1 [Reference] 0.48 (0.33-0.71) 0.72 (0.54-0.96) .42 CV mortality 1 [Reference] 0.42 (0.22-0.78) 0.44 (0.25-0.80) .051 No diabetes All-cause mortality 1 [Reference] 0.64 (0.45-0.92) 0.72 (0.53-0.99) .17 CV mortality 1 [Reference] 0.64 (0.34-1.19) 0.48 (0.25-0.91) .04 Abbreviations: CV, cardiovascular; CVD, cardiovascular disease; HR, hazard ratio. Tertile 1 includes patients with folate levels less than 4.3 ng/mL; tertile 2, 4.3 to 8.2 ng/mL; and tertile 3, greater than 8.2 ng/mL (to convert to nmol/L, multiply by 2.266). Folate levels were derived from all eligible participants including those with CVD or diabetes. Models were adjusted for National Health and Nutrition Examination Survey weights. Hazard ratio for subgroup of 552 patients without CVD at baseline was adjusted for age, sex, race, C-reactive protein value, body mass index, smoking, disease-modifying antirheumatic drug use, nonsteroidal anti-inflammatory drug use, steroid use (all-cause mortality model only), and history of hypertension and diabetes. Hazard ratio for subgroup of 576 patients without diabetes at baseline was adjusted for age, sex, race, C-reactive protein value, body mass index, smoking, disease-modifying antirheumatic drug use, nonsteroidal anti-inflammatory drug use, steroid use, and history of hypertension and CVD. JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 7/11 JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis with folic acid. In a multicenter study of patients with RA, plasma HCYS was significantly lower among patients receiving folate supplementation compared with placebo (difference, −0.4 mg/L; P < .001). Two other studies reported an inverse association of serum folate with plasma HCYS in 38,39 patients with RA. Consistent with these findings, HCYS concentration decreased with increasing folate level in our study. However, it is important to note that we did not observe a dose-response association for serum folate and CV mortality risk. In general, HCYS levels above 1.4 mg/L are considered elevated, and CV risk has been shown to increase in a linear fashion for HCYS levels 6,40,41 greater than this threshold. Because patients in both tertile 2 (HCYS reduction of 1.3 mg/L) and tertile 3 (HCYS reduction of 1.1 mg/L) had achieved HCYS reductions of less than 1.4 mg/L, CV risk estimates for these serum tertiles were not statistically significantly different. The lack of dose- response association for serum folate and CV mortality is consistent with findings in the general population. Limitations This study has limitations. The diagnosis of RA was self-reported in our study. The case definition for arthritis (ie, self-reported physician-diagnosed arthritis) used in our study is recommended by the 42,43 US Centers for Disease Control and Prevention and has been validated. It is possible that limitations of survey methodology (ie, information was collected only on prescription drugs that were used by survey participants within 30 days before the interview) may have led to lower number of treated patients with RA in NHANES III; however, incorporation of drug information is 44,45 recommended, and previous studies also have reported poor treatment rates in RA. The folate status of patients was based on a single serum folate concentration measurement that may not accurately represent long-term folate levels; however, pathological studies have shown positive correlation (R = 0.53) between serum folate and liver folate (a laboratory biomarker for tissue stores 46 32 of folate). Next, consistent with findings in the general population, estimates for all-cause mortality were not significant. All-cause mortality, by definition, includes deaths due to any non-CV cause (ie, accidental or injury-related death or death due to other health conditions) and presumably has no association with serum folate. Although most confounders were taken into consideration, we did not adjust our analyses for factors that might affect serum folate levels, including health conditions in which folate absorption lowers (eg, celiac diseases or Crohn disease) or use of drugs such as phenytoin. Furthermore, the observational nature of the data precludes causal inference, and the timeframe of NHANES III data collection limits the generalizability of our findings to current clinical practices. Conclusions Our findings suggest that serum folate level is associated with CV mortality risk among patients with RA and might be a useful indicator for assessing patient risk in clinical practice. Additionally, if a causal link is validated in future clinical studies, folate supplementation can be an inexpensive strategy for reducing CV mortality risk in patients with RA. ARTICLE INFORMATION Accepted for Publication: December 30, 2019. Published: February 26, 2020. doi:10.1001/jamanetworkopen.2020.0100 Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2020 Sonawane Ketal. JAMA Network Open. Corresponding Author: Kalyani Sonawane, PhD, 1200 Pressler St, RAS E905, Center for Healthcare Data, Department of Management, Policy, and Community Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 (kalyani.b.sonawane@uth.tmc.edu). JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 8/11 JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis Author Affiliations: Center for Healthcare Data, Department of Management, Policy, and Community Health, School of Public Health, University of Texas Health Science Center at Houston (Sonawane); Center for Health Services Research, Department of Management, Policy, and Community Health, School of Public Health, University of Texas Health Science Center at Houston (Sonawane, Deshmukh); Department of Management, Policy, and Community Health, University of Texas Health Science Center at Houston (Zhu); Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston (Chan); Department of Medicine, Division of Cardiology, University of Texas Health Medical School at Houston (Aguilar); Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston (Aguilar); Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (Suarez-Almazor). Author Contributions: Dr Sonawane had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: Sonawane, Deshmukh. Acquisition, analysis, or interpretation of data: Sonawane, Zhu, Chan, Aguilar, Suarez-Almazor. Drafting of the manuscript: Sonawane, Zhu. Critical revision of the manuscript for important intellectual content: Sonawane, Chan, Aguilar, Deshmukh, Suarez- Almazor. Statistical analysis: Sonawane, Zhu, Chan, Deshmukh. Administrative, technical, or material support: Aguilar. Supervision: Sonawane, Suarez-Almazor. Conflict of Interest Disclosures: Dr Deshmukh reported serving as a consultant for Merck outside the submitted work. Dr Suarez-Almazor reported receiving grants from Pfizer and receiving consulting fees from Abbvie, Amag Pharmaceuticals, Agile Therapeutics, Bristol-Myers Squibb, Eli Lilly and Co, and Endo Pharmaceuticals outside the submitted work. No other disclosures were reported. REFERENCES 1. Meune C, Touzé E, Trinquart L, Allanore Y. Trends in cardiovascular mortality in patients with rheumatoid arthritis over 50 years: a systematic review and meta-analysis of cohort studies. Rheumatology (Oxford). 2009;48 (10):1309-1313. doi:10.1093/rheumatology/kep252 2. Hernanz A, Plaza A, Martín-Mola E, De Miguel E. Increased plasma levels of homocysteine and other thiol compounds in rheumatoid arthritis women. Clin Biochem. 1999;32(1):65-70. doi:10.1016/S0009-9120(98) 00093-9 3. Schroecksnadel K, Frick B, Kaser S, et al. Moderate hyperhomocysteinaemia and immune activation in patients with rheumatoid arthritis. Clin Chim Acta. 2003;338(1-2):157-164. doi:10.1016/j.cccn.2003.09.003 4. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta- analysis. BMJ. 2002;325(7374):1202. doi:10.1136/bmj.325.7374.1202 5. Roubenoff R, Dellaripa P, Nadeau MR, et al. Abnormal homocysteine metabolism in rheumatoid arthritis. Arthritis Rheum. 1997;40(4):718-722. doi:10.1002/art.1780400418 6. Alomari MA, Khabour OF, Alawneh K, Shammaa RA. Possible modulation of vascular function measures in rheumatoid arthritis by homocysteine. Int J Rheumatol. 2018;2018:8498651. doi:10.1155/2018/8498651 7. Seriolo B, Fasciolo D, Sulli A, Cutolo M. Homocysteine and antiphospholipid antibodies in rheumatoid arthritis patients: relationships with thrombotic events. Clin Exp Rheumatol. 2001;19(5):561-564. 8. Wållberg-Jonsson S, Cvetkovic JT, Sundqvist KG, Lefvert AK, Rantapää-Dahlqvist S. Activation of the immune system and inflammatory activity in relation to markers of atherothrombotic disease and atherosclerosis in rheumatoid arthritis. J Rheumatol. 2002;29(5):875-882. 9. Cakmak SK, Gül U, Kiliç C, Gönül M, Soylu S, Kiliç A. Homocysteine, vitamin B12 and folic acid levels in psoriasis patients. J Eur Acad Dermatol Venereol. 2009;23(3):300-303. doi:10.1111/j.1468-3083.2008.03024.x 10. Krogh Jensen M, Ekelund S, Svendsen L. Folate and homocysteine status and haemolysis in patients treated with sulphasalazine for arthritis. Scand J Clin Lab Invest. 1996;56(5):421-429. doi:10.3109/00365519609088797 11. Helliwell M, Coombes EJ, Moody BJ, Batstone GF, Robertson JC. Nutritional status in patients with rheumatoid arthritis. Ann Rheum Dis. 1984;43(3):386-390. doi:10.1136/ard.43.3.386 12. Hornung N, Ellingsen T, Stengaard-Pedersen K, Poulsen JH. Folate, homocysteine, and cobalamin status in patients with rheumatoid arthritis treated with methotrexate, and the effect of low dose folic acid supplement. J Rheumatol. 2004;31(12):2374-2381. JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 9/11 JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis 13. Vreugdenhil G, Wognum AW, van Eijk HG, Swaak AJ. Anaemia in rheumatoid arthritis: the role of iron, vitamin B12, and folic acid deficiency, and erythropoietin responsiveness. Ann Rheum Dis. 1990;49(2):93-98. doi:10.1136/ ard.49.2.93 14. Gough KR, McCarthy C, Read AE, Mollin DL, Waters AH. Folic-acid deficiency in rheumatoid arthritis. Br Med J. 1964;1(5377):212-217. doi:10.1136/bmj.1.5377.212 15. van Ede AE, Laan RF, Blom HJ, et al. Homocysteine and folate status in methotrexate-treated patients with rheumatoid arthritis. Rheumatology (Oxford). 2002;41(6):658-665. doi:10.1093/rheumatology/41.6.658 16. Visser K, Katchamart W, Loza E, et al. Multinational evidence-based recommendations for the use of methotrexate in rheumatic disorders with a focus on rheumatoid arthritis: integrating systematic literature research and expert opinion of a broad international panel of rheumatologists in the 3E Initiative. Ann Rheum Dis. 2009;68(7):1086-1093. doi:10.1136/ard.2008.094474 17. Whittle SL, Hughes RA. Folate supplementation and methotrexate treatment in rheumatoid arthritis: a review. Rheumatology (Oxford). 2004;43(3):267-271. doi:10.1093/rheumatology/keh088 18. US Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey: data files. https://wwwn.cdc.gov/nchs/nhanes/nhanes3/datafiles.aspx. Accessed February, 2019. 19. De Bruyn E, Gulbis B, Cotton F. Serum and red blood cell folate testing for folate deficiency: new features? Eur J Haematol. 2014;92(4):354-359. doi:10.1111/ejh.12237 20. Farrell CJ, Kirsch SH, Herrmann M. Red cell or serum folate: what to do in clinical practice? Clin Chem Lab Med. 2013;51(3):555-569. doi:10.1515/cclm-2012-0639 21. Benjamin EJ, Muntner P, Alonso A, et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56-e528. doi:10.1161/CIR. 22. US Centers for Disease Control and Prevention. 2015 Public-use linked mortality file. https://www.cdc.gov/nchs/ data-linkage/mortality-public.htm. Accessed January 21, 2020. 23. Austin PC, Lee DS, Fine JP. Introduction to the analysis of survival data in the presence of competing risks. Circulation. 2016;133(6):601-609. doi:10.1161/CIRCULATIONAHA.115.017719 24. Lawlor DA, Ebrahim S, Davey Smith G. Sex matters: secular and geographical trends in sex differences in coronary heart disease mortality. BMJ. 2001;323(7312):541-545. 25. Owens IP. Ecology and evolution: sex differences in mortality rate. Science. 2002;297(5589):2008-2009. 26. McGee DL; Diverse Populations Collaboration. Body mass index and mortality: a meta-analysis based on person-level data from twenty-six observational studies. Ann Epidemiol. 2005;15(2):87-97. doi:10.1016/j. annepidem.2004.05.012 27. Kaptoge S, Di Angelantonio E, Lowe G, et al; Emerging Risk Factors Collaboration. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375(9709):132-140. doi:10.1016/S0140-6736(09)61717-7 28. Davis JM III, Maradit Kremers H, Crowson CS, et al. Glucocorticoids and cardiovascular events in rheumatoid arthritis: a population-based cohort study. Arthritis Rheum. 2007;56(3):820-830. doi:10.1002/art.22418 29. Trelle S, Reichenbach S, Wandel S, et al. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. BMJ. 2011;342:c7086. 30. US Centers for Disease Control and Prevention. Analytic and reporting guidelines: the third National Health and Nutrition Examination Survey, NHANES III (1988-94). https://wwwn.cdc.gov/nchs/data/nhanes3/manuals/ nh3gui.pdf. Accessed January 21, 2020. 31. Morrison HI, Schaubel D, Desmeules M, Wigle DT. Serum folate and risk of fatal coronary heart disease. JAMA. 1996;275(24):1893-1896. doi:10.1001/jama.1996.03530480035037 32. Loria CM, Ingram DD, Feldman JJ, Wright JD, Madans JH. Serum folate and cardiovascular disease mortality among US men and women. Arch Intern Med. 2000;160(21):3258-3262. doi:10.1001/archinte.160.21.3258 33. Sonawane K, Chhatwal J, Deshmukh AA. Folic acid–containing dietary supplement consumption and risk of cardiovascular diseases in rheumatoid arthritis patients: NHANES 1999-2014. J Gen Intern Med. 2019;34(1):15-16. doi:10.1007/s11606-018-4674-5 34. Bazzano LA, Reynolds K, Holder KN, He J. Effect of folic acid supplementation on risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. JAMA. 2006;296(22):2720-2726. doi:10.1001/jama. 296.22.2720 JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 10/11 JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis 35. Li Y, Huang T, Zheng Y, Muka T, Troup J, Hu FB. Folic acid supplementation and the risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. J Am Heart Assoc. 2016;5(8):e003768. doi:10.1161/ JAHA.116.003768 36. Brouwer IA, van Dusseldorp M, Thomas CM, et al. Low-dose folic acid supplementation decreases plasma homocysteine concentrations: a randomized trial. Am J Clin Nutr. 1999;69(1):99-104. doi:10.1093/ajcn/69.1.99 37. Wald DS, Bishop L, Wald NJ, et al. Randomized trial of folic acid supplementation and serum homocysteine levels. Arch Intern Med. 2001;161(5):695-700. doi:10.1001/archinte.161.5.695 38. Slot O. Changes in plasma homocysteine in arthritis patients starting treatment with low-dose methotrexate subsequently supplemented with folic acid. Scand J Rheumatol. 2001;30(5):305-307. doi:10.1080/ 39. Morgan SL, Baggott JE, Lee JY, Alarcón GS. Folic acid supplementation prevents deficient blood folate levels and hyperhomocysteinemia during longterm, low dose methotrexate therapy for rheumatoid arthritis: implications for cardiovascular disease prevention. J Rheumatol. 1998;25(3):441-446. 40. Willers J, Hahn A. Cardiovascular risk in patients with rheumatoid arthritis: assessment of several traditional risk parameters and a German risk score model. Rheumatol Int. 2012;32(12):3741-3749. doi:10.1007/s00296-011- 2238-7 41. Stanger O, Herrmann W, Pietrzik K, et al. Clinical use and rational management of homocysteine, folic acid, and B vitamins in cardiovascular and thrombotic diseases. Z Kardiol. 2004;93(6):439-453. doi:10.1007/s00392-004- 0075-3 42. US Centers for Disease Control and Prevention. FAQs—self-reported case definitions. https://www.cdc.gov/ arthritis/data_statistics/faqs.htm. Accessed February 11, 2020. 43. Walitt BT, Constantinescu F, Katz JD, et al. Validation of self-report of rheumatoid arthritis and systemic lupus erythematosus: the Women’s Health Initiative. J Rheumatol. 2008;35(5):811-818. 44. Theis KA, Brady TJ, Sacks JJ. Where have all the patients gone? profile of US adults who report doctor- diagnosed arthritis but are not being treated. J Clin Rheumatol. 2018. doi:10.1097/RHU.0000000000000896 45. Kern DM, Chang L, Sonawane K, et al. Treatment patterns of newly diagnosed rheumatoid arthritis patients from a commercially insured population. Rheumatol Ther. 2018;5(2):355-369. doi:10.1007/s40744-018-0114-6 46. Wu A, Chanarin I, Slavin G, Levi AJ. Folate deficiency in the alcoholic: its relationship to clinical and haematological abnormalities, liver disease and folate stores. Br J Haematol. 1975;29(3):469-478. doi:10.1111/j. 1365-2141.1975.tb01844.x SUPPLEMENT. eTable 1. Factors Associated With All-Cause and Cardiovascular Mortality in Rheumatoid Arthritis, NHANES III eTable 2. Ten-Year Mortality Risk in Patients with Rheumatoid Arthritis by Serum Folate Tertile, NHANES III eTable 3. Characteristics of Patients With Rheumatoid Arthritis but Without Cardiovascular Disease by Folate Tertile, NHANES III eTable 4. Characteristics of Patients With Rheumatoid Arthritis but Without Diabetes by Folate Tertile, NHANES III eFigure 1. Sample Flow Diagram eFigure 2. Cumulative Incidence Curves for All-Cause and Cardiovascular Mortality Risk in Patients With Rheumatoid Arthritis but Without Cardiovascular Disease by Serum Folate Tertile, NHANES III eFigure 3. Cumulative Incidence Curves for All-Cause and Cardiovascular Mortality Risk in Patients With Rheumatoid Arthritis but Without Diabetes by Serum Folate Tertile, NHANES III JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 11/11 Supplementary Online Content Sonawane K, Zhu Y, Chan W, Aguilar D, Deshmukh AA, Suarez-Almazor ME. Association of serum folate levels with cardiovascular mortality among adults with rheumatoid arthritis. JAMA Netw Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 eTable 1. Factors Associated With All-Cause and Cardiovascular Mortality in Rheumatoid Arthritis, NHANES III eTable 2. Ten-Year Mortality Risk in Patients with Rheumatoid Arthritis by Serum Folate Tertile, NHANES III eTable 3. Characteristics of Patients With Rheumatoid Arthritis but Without Cardiovascular Disease by Folate Tertile, NHANES III eTable 4. Characteristics of Patients With Rheumatoid Arthritis but Without Diabetes by Folate Tertile, NHANES III eFigure 1. Sample Flow Diagram eFigure 2. Cumulative Incidence Curves for All-Cause and Cardiovascular Mortality Risk in Patients With Rheumatoid Arthritis but Without Cardiovascular Disease by Serum Folate Tertile, NHANES III eFigure 3. Cumulative Incidence Curves for All-Cause and Cardiovascular Mortality Risk in Patients With Rheumatoid Arthritis but Without Diabetes by Serum Folate Tertile, NHANES III This supplementary material has been provided by the authors to give readers additional information about their work. © 2020 Sonawane K et al. JAMA Network Open. eTable 1. Factors Associated With All-Cause and Cardiovascular Mortality in Rheumatoid Arthritis, NHANES III HAZARD RATIO (95% CI) CHARACTERISTIC ALL-CAUSE CARDIOVASCULAR Folate Tertile III vs. I 0.74 (0.54-1.03) 0.44 (0.26-0.75) II vs. I 0.63 (0.47-0.85) 0.52 (0.30-0.92) C-reactive Protein >1 mg/dL vs. Undetected 1.98 (1.46-2.69) 1.23 (0.75-2.03) 0.3-1.0 vs. Undetected 1.49 (0.97-2.29) 1.36 (0.61-3.03) Age 1.09 (1.07-1.11) 1.09 (1.06-1.13) Female vs. Male 0.79 (0.54-1.15) 1.20 (0.55-2.66) White vs. Other 1.11 (0.85-1.47) 1.31 (0.84-2.04) Body Mass Index 1.00 (0.98-1.02) 0.99 (0.96-1.03) Current smoker (Yes vs. No) 1.48 (1.18-1.86) 1.22 (0.77-1.95) Using DMARD (Yes vs. No) 0.94 (0.51-1.73) 0.48 (0.06-3.75) Using NSAID (Yes vs. No) 1.21 (0.71-2.06) 0.68 (0.38-1.20) Using Steroid (Yes vs. No) 0.90 (0.69-1.18) 1.50 (0.51-4.41) Hypertension (Yes vs. No) 1.08 (0.84-1.39) 1.23 (0.73-2.04) Diabetes (Yes vs. No) 2.68 (1.96-3.66) 2.68 (1.38-5.19) Existing CVD (Yes vs. No) 1.09 (0.82-1.46) 1.20 (0.74-1.93) NHANES, National Health and Nutrition Examination Survey; CI, Confidence Interval; DMARD, disease- modifying anti-rheumatic drug; NSAID, non-steroidal anti-inflammatory drug, CVD, cardiovascular disease. Models were adjusted for NHANES survey weights. Folate Tertile cut-off values: 4.3 and 8.2 ng/mL. © 2020 Sonawane K et al. JAMA Network Open. eTable 2. Ten-Year Mortality Risk in Patients with Rheumatoid Arthritis by Serum Folate Tertile, NHANES III FOLATE TERTILE OVERALL P for trend I II III ALL CAUSE MORTALITY No. with events / No. at risk 61/239 65/234 75/210 Unadjusted HR (95% CI ) Ref 0.80 (0.48-1.33 1.14 (0.73-1.77) 0.34 Adjusted HR (95% CI ) Ref 0.60 (0.37-0.97) 0.66 (0.41-1.07) 0.20 CARDIOVASCULAR MORTALITY No. with events / No. at risk 26/239 23/234 30/210 0.59 HR (unadjusted) Ref 0.45 (0.22-0.94) 0.74 (0.42-1.33) 95% CI Ref 0.04 HR (adjusted) Ref 0.31 (0.17-0.59) 0.39 (0.22-0.69) 95% CI Ref NHANES, National Health and Nutrition Examination Survey; HR, Hazard ratio; CI, Confidence Interval. Folate Tertile cut-off values: 9.7 and 18.6 nmol/L. Models were adjusted for NHANES survey weights. Hazard ratio adjusted for age, sex, race, C-reactive protein value, body mass index, smoking, disease- modifying anti-rheumatic drug use, steroid use, non-steroidal anti-inflammatory drug use, and history of hypertension, diabetes, and cardiovascular disease. © 2020 Sonawane K et al. JAMA Network Open. eTable 3. Characteristics of Patients With Rheumatoid Arthritis but Without Cardiovascular Disease by Folate Tertile, NHANES III FOLATE TERTILE CHARACTERISTIC TOTAL I II III Mean Age 53.72 (1.08) 50.38 (1.41) 53.46 (2.07) 57.22 (1.85) (SE), in years Male, n (%) 171 (29.59) 63 (35.78) 63 (31.09) 45 (22.08) White, n (%) 383 (87.25) 119 (81.42) 133 (88.21) 131 (91.93) Mean body mass index 27.60 (0.35) 28.27 (0.53) 27.29 (0.64) 27.29 (0.72) (SE) Mean C-reactive protein 0.118 (0.010) 0.128 (0.019) 0.099 (0.012) 0.121 (0.018) (SE), mg/L Current smoker, n (%) 282 (57.60) 114 (67.92) 85 (51.31) 83 (53.94) DMARD Use, n (%) 25 (5.2) 7 (4.1) 8 (2.1) 10 (9.4) Steroid Use, n (%) 28 (6.2) 11 (6.1) 5 (3.0) 12 (9.4) NSAID Use, n (%) 129 (21.8) 41 (24.6) 45 (17.4) 43 (23.5) Folic Acid Supplement 146 (32.1) 24 (10.9) 28 (18.8) 94 (66.1) Use, n (%) Diabetes, n (%) 68 (8.01) 16 (1.92) 25 (8.20) 27 (9.88) Hypertension, n (%) 217 (32.81) 71 (35.88) 78 (35.60) 68 (27.02) NHANES, National Health and Nutrition Examination Survey; SE, Standard error; DMARD, Disease- modifying anti-rheumatic drug; NSAID, Non-steroidal anti-inflammatory drug. Folate Tertile cut-off values: 4.3 and 8.2 ng/mL. © 2020 Sonawane K et al. JAMA Network Open. eTable 4. Characteristics of Patients With Rheumatoid Arthritis but Without Diabetes by Folate Tertile, NHANES III FOLATE TERTILE CHARACTERISTIC TOTAL I II III Mean Age 54.46 (1.06) 51.19 (1.30) 54.46 (2.05) 57.76 (1.92) (SE), in years Male, n (%) 194 (30.81) 77 (38.77) 69 (31.06) 48 (22.49) White, n (%) 401 (87.37) 122 (79.45) 140 (88.72) 139 (94.03) Mean body mass index 27.35 (0.33) 28.19 (0.49) 27.05 (0.66) 26.81 (0.68) (SE) Mean C-reactive protein 0.121 (0.011) 0.134 (0.019) 0.111 (0.014) 0.112 (0.019) (SE), mg/dL Current smoker, n (%) 301 (57.96) 131 (69.77) 94 (52.26) 76 (51.72) DMARD Use, n (%) 26 (5.0) 7 (3.8) 9 (2.1) 10 (9.0) Steroid Use, n (%) 30 (5.9) 9 (5.0) 8 (3.3) 13 (9.4) NSAID Use, n (%) 128 (19.8) 47 (26.0) 46 (15.9) 35 (17.6) Folic Acid Supplement 148 (32.5) 28 (12.0) 31 (19.6) 89 (66.3) Use, n (%) Cardiovascular Disease, 92 (10.42) 35 (11.12) 31 (9.06) 26 (11.07) n (%) Hypertension, n (%) 234 (34.28) 81 (34.83) 79 (36.11) 74 (31.88) NHANES, National Health and Nutrition Examination Survey; SE, Standard error; DMARD, Disease- modifying anti-rheumatic drug; NSAID, Non-steroidal anti-inflammatory drug. Folate Tertile cut-off values: 4.3 and 8.3 ng/mL. © 2020 Sonawane K et al. JAMA Network Open. eFigure 1. Sample Flow Diagram NHANES III participants (N=33,994) Exclude: Age <18 years (n=13,944) Pregnant (n=338) RA cohort No follow-up (n=458) n=683 No RA (n=18,416) Missing covariate information (n=155) Folate Tertile I Folate Tertile II Folate Tertile III n=239 n=234 n=210 © 2020 Sonawane K et al. JAMA Network Open. eFigure 2. Cumulative Incidence Curves for All-Cause and Cardiovascular Mortality Risk in Patients With Rheumatoid Arthritis but Without Cardiovascular Disease by Serum Folate Tertile, NHANES III © 2020 Sonawane K et al. JAMA Network Open. eFigure 3. Cumulative Incidence Curves for All-Cause and Cardiovascular Mortality Risk in Patients With Rheumatoid Arthritis but Without Diabetes by Serum Folate Tertile, NHANES III © 2020 Sonawane K et al. JAMA Network Open. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png JAMA Network Open American Medical Association

Association of Serum Folate Levels With Cardiovascular Mortality Among Adults With Rheumatoid Arthritis

Loading next page...
 
/lp/american-medical-association/association-of-serum-folate-levels-with-cardiovascular-mortality-among-cp6RCFHJmS
Publisher
American Medical Association
Copyright
Copyright 2020 Sonawane K et al. JAMA Network Open.
eISSN
2574-3805
DOI
10.1001/jamanetworkopen.2020.0100
Publisher site
See Article on Publisher Site

Abstract

Key Points Question Are serum folate levels IMPORTANCE Patients with rheumatoid arthritis (RA) are at high risk for cardiovascular (CV) associated with cardiovascular mortality mortality, attributed to chronic inflammation coupled with elevated circulatory homocysteine levels. risk among adults with rheumatoid Increasing the serum folate level reduces homocysteine, but the association of serum folate arthritis (RA)? concentration with CV mortality in patients with RA has not been previously examined. Findings In this cohort study including 683 patients with RA, those with serum OBJECTIVE To examine the association of serum folate concentration and CV mortality risk among folate levels between 4.3 and 8.2 ng/mL patients with RA. and greater than 8.2 ng/mL had 48% and 56% lower cardiovascular mortality DESIGN, SETTING, AND PARTICIPANTS A cohort study of the third National Health and Nutrition risk, respectively, compared with Examination Survey (1988-1994) and 2011 Linked Mortality File was performed. Adults aged 18 years patients who had serum folate levels or older with self-reported physician-diagnosed RA were included. Data analysis was performed less than 4.3 ng/mL after adjusting for between April 2019 and June 2019. demographic characteristics, body mass index, C-reactive protein level, smoking, EXPOSURE Serum folate level. RA medication use, and comorbid conditions. MAIN OUTCOMES AND MEASURES All-cause and CV mortality risk estimated using Cox proportional hazards models, adjusted for the complex survey design and patient characteristics, Meaning In this study, serum folate including demographic characteristics, body mass index, C-reactive protein level, smoking, RA levels of at least 4.3 ng/mL were medication use, and comorbid conditions. associated with lower cardiovascular mortality risk among patients with RA. RESULTS A total of 683 patients with RA (mean [SE] age, 55.9 [1.0] years; 225 [30.2%] men; 478 [87.0%] white) were classified into tertiles based on serum folate levels, as follows: tertile 1, folate Supplemental content levels less than 4.3 ng/mL (n = 239); tertile 2, folate levels 4.3 ng/mL to 8.2 ng/mL (n = 234); and tertile 3, folate levels greater than 8.2 ng/mL (n = 210). During a median (interquartile range) Author affiliations and article information are listed at the end of this article. follow-up of 17.4 (10.0-19.4) years, a total of 392 all-cause deaths and 258 CV deaths occurred. Compared with tertile 1, patients in tertile 2 had lower all-cause mortality risk (hazard ratio [HR], 0.63; 95% CI, 0.47-0.85). The risk of CV mortality was lower among patients in tertile 2 (HR, 0.52; 95% CI, 0.30-0.92) and tertile 3 (HR, 0.44; 95% CI, 0.26-0.75) compared with those in tertile 1 (P for trend = .01). Findings for CV mortality were consistent in a sensitivity analysis that estimated 10-year risk; patients in tertile 2 (HR, 0.31; 95% CI, 0.17-0.57) and tertile 3 (HR, 0.39; 95% CI, 0.22-0.69) had lower CV mortality risk compared with those in tertile 1 (P for trend = .04). CONCLUSIONS AND RELEVANCE Among patients with RA, a serum folate level of at least 4.3 ng/mL was associated with lower CV mortality risk. Further research is needed to examine whether a causal relationship exists between serum folate and CV risk among patients with RA. JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 Open Access. This is an open access article distributed under the terms of the CC-BY License. JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 1/11 JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis Introduction The risk of cardiovascular (CV) mortality among individuals with rheumatoid arthritis (RA) is 60% greater than among the general population. The etiological reason for increased CV mortality among patients with RA remains unexplained; however, a possible explanation is that increased 2-4 homocysteine (an established CV risk factor) resulting from chronic systemic inflammation may 5-8 potentially lead to increased CV mortality. Folic acid, or folate, is an essential nutrient that has a homocysteine-lowering effect. Folate deficiency is common among patients with autoimmune 9-11 diseases, including RA, and it is also a well-documented adverse effect of the disease-modifying 10,12 antirheumatic drug methotrexate. To counteract reduced folate levels, folate supplements are 13-16 recommended to patients with RA. Among patients with RA, an inverse association between serum folate level and homocysteine has been reported. However, to our knowledge, no published study has examined the association of serum folate levels with long-term CV outcomes. The objective of this study was to determine the association of serum folate levels with CV mortality among patients with RA. Using the third National Health and Nutrition Examination Survey, 1988 to 1994 (NHANES III) and linked mortality data, we examined whether optimal serum folate levels were associated with lower CV mortality risk in adults with RA. Methods Data Source and Study Design This is a cohort study of the NHANES III, which contains information from 33 994 US residents aged 2 months or older. The NHANES is a complex, stratified, multistage probability sample of noninstitutionalized US civilians. The survey collects information on demographic characteristics, socioeconomic status, and health conditions and behaviors, which are administered through a personal or telephone interview. Physiologic, dental, and laboratory examinations are included in the survey; these are conducted by trained medical professionals in mobile examination centers (MECs). A detailed description of the NHANES is available elsewhere. For this study, we merged the NHANES III with the 2011 National Center for Health Statistics Linked Mortality Files. The institutional review board of the University of Texas Health Science Centre at Houston deemed this study exempt from review and informed consent because it uses publicly available deidentified data. This report followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline. Cohort Identification We identified adults aged 18 years or older with a self-reported diagnosis of RA. Self-reported data on medical conditions were collected at the MEC through a standardized questionnaire. Participants were asked, “Has a doctor ever told you that you have arthritis?” Those who responded yes were further asked, “Which type of arthritis was it?” Our cohort was restricted to participants who responded that they were diagnosed with rheumatoid arthritis. We excluded participants who were pregnant during the interview and those with missing data. Specimen Collection and Laboratory Methods Blood specimens of participants were collected in the MEC by trained laboratory technicians, and frozen specimens were shipped overnight per protocol. The NHANES III examined both serum and red blood cell folate values. We used the serum folate value because it is influenced by fewer analytical variables and it shows a higher correlation with homocysteine compared with red blood 19,20 cell folate. Serum folate levels were measured using the Bio-Rad Laboratories Quantaphase Folate radioassay kit. The assay consists of the preparation of labeled 12 × 75 mm tubes in duplicate for each blank, standard, control, and patient sample. Standard manual procedures, as outlined by JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 2/11 JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis the manufacturer for the instrument, were followed. Reportable values for serum folate ranged from 0.4 to 199.0 ng/mL (to convert to nanomoles per liter, multiply by 2.266). We also evaluated C-reactive protein (CRP) levels as a biomarker for inflammation. The CRP assay was performed on a Behring nephelometer analyzer system. Samples were centrifuged at 3000 rpm for 15 minutes and transferred to a fully automated nephelometer analyzer. Results were automatically printed and calculated by the nephelometer analyzer when the tests were completed. Reportable values for CRP in the NHANES III were between 0.03 mg/L to 2.52 mg/L (to convert to nanomoles per liter, multiply by 9.524). Participants with undetectable values were labeled accordingly. The NHANES III defined normal CRP values as 0 mg/dL to 0.1 mg/L in normal healthy adults based on in-house testing of a sample of 300 patients. For this study, we classified CRP level into the 3 following categories: undetectable (<0.03 mg/L), 0.03 mg/L to 0.1 mg/L, and greater than 0.1 mg/L. Serum homocysteine (HCYS) levels were analyzed using residual serum samples. The samples were reduced using tributylphosphine to disassociate HCYS from nonrelevant proteins and other disulfides, followed by acid precipitation and the addition of 7-fluorobenzo-2-oxa-1,3-diazole-4- sulfonic acid, a fluorescent reagent. Subsequently, reverse-phase high-performance liquid chromatography and fluorescence detection were used to quantify HCYS. Values for HCYS in the NHANES III ranged from 0.27 mg/L to 17.8 mg/L (to convert to micromoles per liter, multiply by 7.397). Demographic and Clinical Characteristics Demographic data, including age at the time of the interview, sex, and race/ethnicity, were collected through a standard questionnaire administered in-home by trained interviewers using a computer- assisted personal interviewing system. Body mass index (calculated as weight in kilograms divided by height in meters squared) was calculated for each participant based on body measurements collected at the MEC. A detailed questionnaire regarding tobacco use was also administered. We identified participants as current smokers if they responded yes to the question, “Do you smoke cigarettes now?” Hypertension, diabetes, and cardiovascular diseases (CVDs) were also self- reported. For the purpose of this study, we identified participants with CVD as those who responded yes to the questions, “Has a doctor ever told you that you had congestive heart failure?” or “Has a doctor ever told you that you had stroke?” or “Has a doctor ever told you that you had heart attack?” A similar case definition for CVD was used in a previously published report. Prescription Drug and Dietary Supplement Use During the survey, participants were asked if they had taken any prescription drugs and dietary supplements during the past 30 days. Participants who answered yes provided containers of medications and dietary supplements to a trained professional who then matched the product using a prescription drug database (Lexicon Plus; Cerner Multum) and a dietary supplement database (Supliden; National Center for Health Statistics). Information regarding the strength, dosage form, and duration of use was recorded for each medication, provided by the participant. Similarly, information on the dietary blend, strength, and duration of use was recorded for all dietary supplements. We used prescription drug use data to identify patients who reported that they were using disease-modifying antirheumatic drugs, steroids, or nonsteroidal antiinflammatory drugs. Similarly, we used dietary supplement data to identify patients who consumed a dietary supplement containing folic acid. Mortality Data The 2011 National Center for Health Statistics Linked Mortality File consists of mortality information (including mortality status, cause of death, and follow-up time) of NHANES III participants from the date of survey participation until death or December 31, 2011. The Linked Mortality File consists of a leading cause of death variable, which includes 9 cause-specific death categories based on the JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 3/11 JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis International Classification of Diseases, Ninth Revision (ICD-9) (through 1999) or ICD-10 (after 1999) code reported on the participant’s death certificate. We defined all-cause mortality as death because of any reason, while CV mortality included deaths reportedly due to a CVD (ie, leading cause of death code 001 or 005). Statistical Analysis We used descriptive statistics to summarize the characteristics of the entire RA cohort and by tertiles of serum folate level. Frequencies and means were estimated for categorical and continuous variables, respectively. Differences in patient characteristics by serum folate tertiles were tested for statistical significance using an analysis of variance for continuous variables and a χ test for categorical variables. The distribution of numbers of patients in the 3 CRP categories was determined and compared using a χ test. Cox proportional hazards models were used to estimate the risk of all-cause and cause-specific (ie, CV) mortality. The models were adjusted for several potential confounding variables including sex, body mass index, CRP value, and use of steroid or nonsteroid 24-29 anti-inflammatory drug, based on prior studies. We calculated tests of trend with the median folate concentration in each tertile as an ordinal variable. The analyses were repeated for the subgroups of patients without CVD and diabetes. Statistical significance was tested at P < .05, and all tests were 2-tailed. All analyses were conducted per the NHANES III analytical guidelines and were performed with SAS version 9.4 (SAS Institute). We used the survey procedures in SAS, which included weight, cluster, and strata statements, to incorporate sampling weights and to account for the complex survey design. Data analysis was performed between April 2019 and June 2019. Results After applying study criteria, the final cohort included a total of 683 patients with RA (mean [SE] age, 55.9 [1.0] years; 225 [30.2%] men; 478 [87.0%] white); 239 (35.0%) belonged in tertile 1 (ie, folate level <4.3 ng/mL), 234 (34.3%) in tertile 2 (ie, folate level 4.3-8.2 ng/mL), and 210 (30.7%) in tertile 3 (ie, folate level >8.2 ng/mL). The total follow-up duration was 23 years (median [interquartile range], 17.4 [10.0-19.4] years). The study flow is illustrated in eFigure 1 in the Supplement. Patient Characteristics Characteristics of the overall RA cohort and the comparison of patients by folate tertiles are presented in Table 1. Age, race, smoking status, serum HCYS, disease-modifying antirheumatic drug use, and folic acid supplement use were significantly different by serum folate tertiles (eg, mean [SD] age: 52.3 [1.4] years in tertile 1 vs 55.6 [2.0] years in tertile 2 vs 59.4 [1.7] years in tertile 3; P = .005; current smokers: 142 [68.0%] in tertile 1 vs 113 [53.2%] in tertile 2 vs 102 [53.4%] in tertile 3; P = .04; disease-modifying antirheumatic drug use: 7 [3.5%] in tertile 1 vs 9 [1.9%] in tertile 2 vs 11 [8.0%] in tertile 3; P = .03). There was no significant difference in the mean CRP level for 313 patients in detectable range (Table 1), and the distribution of patients in undetectable and detectable ranges of CRP level within each folate tertile was also not significantly different (tertile 1: undetectable CRP levels, 114 [48.6%];0.1 mg/L, 71 [31.7%]; >0.1 mg/L, 54 [19.7%]; tertile 2: undetectable CRP levels, 141 [63.9%]; 0.1 mg/L, 55 [22.8%]; >0.1 mg/L, 38 [13.4%]; tertile 3: undetectable CRP levels, 115 [55.7%];0.1 mg/L, 62 [25.7%]; >0.1 mg/L, 33 [18.6%]; P = .23) (Figure 1). All-Cause and Cardiovascular Mortality A total of 392 all-cause and 258 CV deaths occurred during the follow-up period. The unadjusted and adjusted results for all-cause and CV mortality risk are presented in Table 2. The risk of all-cause mortality was significantly lower among patients with RA in tertile 2 compared with those in tertile 1 (adjusted hazard ratio [aHR], 0.63; 95% CI, 0.47-0.85). The risk of CV mortality was significantly lower among patients in tertile 2 vs tertile 1 (aHR, 0.52; 95% CI, 0.30-0.92) and among patients in tertile 3 vs tertile 1 (aHR, 0.44; 95% CI, 0.26-0.75) (P for trend = .01). The cumulative incidence JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 4/11 JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis curves are presented in Figure 2. Factors associated with all-cause and CV mortality in patients with RA are presented in eTable 1 in the Supplement. To examine the robustness of the mortality risk estimates, we conducted a sensitivity analysis by restricting patient follow-up to 10 years. Findings of the sensitivity analysis were consistent with our main analysis. All-cause mortality risk was significantly lower among patients with RA in tertile 2 vs tertile 1 but not among patients in tertile 3 vs tertile 1 (tertile 2: aHR, 0.60; 95% CI, 0.37-0.97; tertile 3: aHR, 0.66; 95% CI, 0.41-1.07; P for trend = .20). Patients with RA in tertile 2 (aHR, 0.31; 95% CI, 0.17-0.57) and tertile 3 (aHR, 0.39; 95% CI, 0.22-0.69) had significantly lower CV mortality risk than those in tertile 1 (P for trend = .04) (eTable 2 in the Supplement). Table 1. Characteristics of Patients With Rheumatoid Arthritis by Serum Folate Tertile From the Third National Health and Nutrition Survey, 1988-1994 No. (%) Total Folate Tertile 1 Folate Tertile 2 Folate Tertile 3 a a a b Characteristic (N = 683) (n = 239) (n = 234) (n = 210) P Value Age, mean (SE), y 55.86 (1.02) 52.33 (1.36) 55.62 (1.99) 59.42 (1.68) .005 Men 225 (30.2) 80 (36.8) 82 (31.9) 63 (22.4) .17 White 478 (87.0) 140 (80.3) 167 (88.0) 171 (92.3) <.001 Body mass index, mean (SE) 27.88 (0.27) 28.92 (0.53) 27.32 (0.61) 27.45 (0.59) .14 C-reactive protein, mean (SE), mg/dL 1.23 (0.09) 1.32 (0.17) 1.13 (0.12) 1.21 (0.16) .62 Serum homocysteine, mean (SE), mg/L 1.34 (0.06) 1.75 (0.09) 1.33 (0.07) 1.08 (0.06) <.001 Current smoker 357 (58.1) 142 (68.0) 113 (53.2) 102 (53.4) .04 DMARD use 27 (4.5) 7 (3.5) 9 (1.9) 11 (8.0) .03 Steroid use 37 (6.0) 15 (7.1) 9 (3.1) 13 (7.9) .25 NSAID use 171 (23.9) 57 (27.9) 61 (21.0) 53 (23.0) .25 Folic acid supplement use 179 (32.2) 29 (11.7) 33 (17.8) 117 (65.3) <.001 Cardiovascular disease 131 (14.8) 43 (14.8) 43 (12.5) 45 (17.0) .63 Diabetes 107 (12.5) 24 (9.8) 37 (11.2) 46 (15.9) .23 Hypertension 301 (37.3) 100 (39.1) 101 (38.7) 100 (34.3) .65 Abbreviations: DMARD, disease-modifying antirheumatic drug; NSAID, nonsteroidal anti- P value represents National Health and Nutrition Examination Survey weight-adjusted inflammatory drug. analysis of variance for continuous variables and χ test for categorical variables. SI conversion factors: To convert C-reactive protein to nanomoles per liter, multiply by Body mass index was calculated as weight in kilograms divided by height in 9.524; homocysteine to micromoles per liter, multiply by 7.397; folate to nanomoles per meters squared. liter, multiply by 2.266. Mean values for 313 patients in detectable range for laboratory assay. Tertile 1 defined as patients with folate levels less than 4.3 ng/mL; tertile 2, 4.3 to 8.2 e Mean values for 355 patients with nonmissing data for serum homocysteine. ng/mL; and tertile 3, greater than 8.2 ng/mL. Figure 1. Distribution of C-reactive Protein (CRP) Values in 313 Patients With Rheumatoid Arthritis by Serum Folate Tertile From the Third National Health and Nutrition Survey, 1988-1994 CRP value Undetectable ≤0.1 mg/L >0.1 mg/L The χ test value for the difference in the proportion of 60 patients according to CRP was not statistically significant (P = .23). The mean CRP values were 1.32 mg/dL among patients in folate tertile 1 (ie, folate levels <4.3 ng/mL), 1.13 mg/dL among patients in folate tertile 2 (ie, folate levels 4.3-8.2 ng/mL), and 1.22 mg/dL among patients in folate tertile 3 (ie, folate levels >8.2 ng/mL). To convert C-reactive protein to nanomoles per liter, multiply by 9.524; to convert Tertile 1 Tertile 2 Tertile 3 folate to nanomoles per liter, multiply by 2.266. JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 5/11 Patients With Rheumatoid Arthritis, % JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis Subgroup Analyses The main analyses were repeated in the subgroup of patients with RA but no CVD at baseline (Table 3). Compared with patients in tertile 1, all-cause mortality risk was lower for patients with RA in tertile 2 (aHR, 0.48; 95% CI, 0.33-0.71) and tertile 3 (aHR, 0.72; 95% CI, 0.54-0.96; P for trend = .42), but the test for trend was not significant. Similarly, the risk of CV mortality was lower for patients with RA in tertile 2 (aHR, 0.42; 95% CI, 0.22-0.78) and tertile 3 (aHR, 0.44; 95% CI, 0.25- 0.80) compared with those in tertile 1, but the test for trend was not significant (P for trend = .051). Results for the subgroup of RA patients without diabetes at baseline are also presented in Table 3. All-cause mortality risk was lower for patients in tertile 2 vs tertile 1 (aHR, 0.64; 95% CI, 0.45-0.92) than among patients in tertile 3 vs tertile 1 (aHR = 0.72; 95% CI, 0.53-0.99) (P for trend = .17). The risk of CV mortality was lower among patients in tertile 3 vs tertile 1 (aHR = 0.48; 95% CI, 0.25-0.91) (P for trend = .04). Comparisons of characteristics by serum folate tertile for the RA subgroups without CVD and diabetes are presented in eTable 3 and e Table 4 in the Supplement, respectively. The cumulative incidence curves for all-cause and CV mortality in these RA subgroups are illustrated in eFigure 2 and eFigure 3 in the Supplement. Table 2. Mortality Risk Among Patients With Rheumatoid Arthritis by Serum Folate Tertile Abbreviations: HR, hazard ratio; NA, not applicable. From the Third National Health and Nutrition Examination Survey, 1988-1994 a Tertile 1 includes patients with folate levels less than 4.3 ng/mL; tertile 2, 4.3 to 8.2 ng/mL; and tertile 3, a a a Overall Folate Tertile 1 Folate Tertile 2 Folate Tertile 3 P for Trend greater than 8.2 ng/mL (to convert to nmol/L, All-cause mortality multiply by 2.266). Models were adjusted for No. with events/No. at risk (%) 121/239 (50.6) 129/234 (55.1) 142/210 (67.6) NA National Health and Nutrition Examination Unadjusted HR (95% CI) 1 [Reference] 0.81 (0.56-1.17) 1.13 (0.83-1.54) .82 Survey weights. Adjusted HR (95% CI) 1 [Reference] 0.63 (0.47-0.85) 0.74 (0.54-1.03) .99 b Hazard ratio adjusted for age, sex, race, C-reactive Cardiovascular mortality protein value, body mass index, smoking, disease- modifying antirheumatic drug use, steroid use, No. with events/No. at risk (%) 81/239 (33.9) 81/234 (34.6) 96/210 (45.7) NA nonsteroidal anti-inflammatory drug use, and history Unadjusted HR (95% CI) 1 [Reference] 0.78 (0.41-1.51) 0.78 (0.44-1.40) .99 of hypertension, diabetes, and Adjusted HR (95% CI) 1 [Reference] 0.52 (0.30-0.92) 0.44 (0.26-0.75) .01 cardiovascular disease. Figure 2. Cumulative Incidence Curves for All-Cause and Cardiovascular Mortality Risk Among Patients With Rheumatoid Arthritis by Serum Folate Tertile From the Third National Health and Nutrition Survey, 1988-1994 A All-cause mortality B Cardiovascular mortality 50 50 Tertile 1 Tertile 2 40 40 Tertile 3 30 30 20 20 10 10 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Time, Years Time, Years No. at risk Tertile 1 239 210 178 140 52 0 239 210 178 140 52 0 Tertile 2 234 208 171 131 39 0 234 208 171 131 39 0 Tertile 3 210 172 138 92 25 0 210 172 138 92 25 0 Cumulative incidence curves were adjusted for age, sex, race, body mass index, diabetes, and cardiovascular disease diagnoses. Tertile 1 includes patients with folate C-reactive protein value, smoking status, disease-modifying antirheumatic drug use, levels less than 4.3 ng/mL; tertile 2, 4.3 to 8.2 ng/mL; and tertile 3, greater than 8.2 steroid use, nonsteroidal anti-inflammatory drug use, and existing hypertension, ng/mL. To convert folate to nanomoles per liter, multiply by 2.266. JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 6/11 All-Cause Mortality Probability, % Cardiovascular Mortality Probability, % JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis Discussion To our knowledge, our study was the first to examine the association of serum folate level with CV mortality risk among adults with RA. We found that patients with RA and serum folate levels less than 4.3 ng/mL had nearly 50% higher CV mortality risk compared with those with serum folate levels of at least 4.3 ng/mL. Data specific to the RA population are unavailable; however, 2 previous studies of 31,32 the general, non-RA population have reported increased CV risk with low serum folate levels. In the study by Morrison et al, participants with serum folate levels less than 3.0 ng/mL had higher risks of coronary heart disease compared with those with serum folate levels greater than 6.0 ng/mL (relative risk, 1.69; 95% CI, 1.10-2.61). Similarly, Loria et al reported an increased CV mortality risk among participants with serum folate levels less than 4.2 ng/mL compared with those with serum folate levels greater than 7.4 ng/mL (relative risk, 2.64; 95% CI, 1.15-6.09). Furthermore, in a previously published study, patients with RA using supplements containing folate had lower odds of CVD compared with those not receiving folate supplementation (odds ratio, 0.15; 95% CI, 0.06-0.42). The diagnosis of CVD is an intermediate end point, unlike mortality. Nonetheless, the lower odds of CVD corroborates the findings of the current study, ie, higher serum folate levels were associated with lower CV mortality risk. Several studies have found an association between folate supplementation, circulating folate concentration, and CVD. The literature on serum folate supplementation provides indirect evidence of the association of serum folate level with CV mortality risk. While a 2006 meta-analysis reported no CVD or all-cause mortality benefits of folate supplementation in patients with history of vascular disease, a 2016 meta-analysis reported a 4% lower risk of CVD among patients with preexisting CV or renal diseases. The heterogeneity of cohorts may have led to the discrepancies in CV outcomes observed in these studies. We conducted a subgroup analysis restricted to participants without CVD and diabetes to examine effect modification in our study. Regardless of preexisting CVD or diabetes, patients with RA and serum folate levels less than 4.3 ng/mL in our study had a high risk of CV mortality. Our findings suggest that serum folate levels are associated with CV risk among patients with RA regardless of existing diabetes and CVD. It is unclear why higher folic acid concentrations would be associated with lower CV mortality risk among patients with RA. A possible explanation is that serum folate lowers CV risk through HCYS 36,37 reduction. Serum folate levels and plasma homocysteine have an inverse relationship. Empirical studies have reported a successful reduction in HCYS levels among patients with RA supplemented Table 3. Mortality Risk Among Patients With Rheumatoid Arthritis but No CVD or Diabetes From the Third National Health and Nutrition Survey, 1988-1994 HR (95% CI) a a a Subgroup Folate Tertile 1 Folate Tertile 2 Folate Tertile 3 P for Trend No CVD All-cause mortality 1 [Reference] 0.48 (0.33-0.71) 0.72 (0.54-0.96) .42 CV mortality 1 [Reference] 0.42 (0.22-0.78) 0.44 (0.25-0.80) .051 No diabetes All-cause mortality 1 [Reference] 0.64 (0.45-0.92) 0.72 (0.53-0.99) .17 CV mortality 1 [Reference] 0.64 (0.34-1.19) 0.48 (0.25-0.91) .04 Abbreviations: CV, cardiovascular; CVD, cardiovascular disease; HR, hazard ratio. Tertile 1 includes patients with folate levels less than 4.3 ng/mL; tertile 2, 4.3 to 8.2 ng/mL; and tertile 3, greater than 8.2 ng/mL (to convert to nmol/L, multiply by 2.266). Folate levels were derived from all eligible participants including those with CVD or diabetes. Models were adjusted for National Health and Nutrition Examination Survey weights. Hazard ratio for subgroup of 552 patients without CVD at baseline was adjusted for age, sex, race, C-reactive protein value, body mass index, smoking, disease-modifying antirheumatic drug use, nonsteroidal anti-inflammatory drug use, steroid use (all-cause mortality model only), and history of hypertension and diabetes. Hazard ratio for subgroup of 576 patients without diabetes at baseline was adjusted for age, sex, race, C-reactive protein value, body mass index, smoking, disease-modifying antirheumatic drug use, nonsteroidal anti-inflammatory drug use, steroid use, and history of hypertension and CVD. JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 7/11 JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis with folic acid. In a multicenter study of patients with RA, plasma HCYS was significantly lower among patients receiving folate supplementation compared with placebo (difference, −0.4 mg/L; P < .001). Two other studies reported an inverse association of serum folate with plasma HCYS in 38,39 patients with RA. Consistent with these findings, HCYS concentration decreased with increasing folate level in our study. However, it is important to note that we did not observe a dose-response association for serum folate and CV mortality risk. In general, HCYS levels above 1.4 mg/L are considered elevated, and CV risk has been shown to increase in a linear fashion for HCYS levels 6,40,41 greater than this threshold. Because patients in both tertile 2 (HCYS reduction of 1.3 mg/L) and tertile 3 (HCYS reduction of 1.1 mg/L) had achieved HCYS reductions of less than 1.4 mg/L, CV risk estimates for these serum tertiles were not statistically significantly different. The lack of dose- response association for serum folate and CV mortality is consistent with findings in the general population. Limitations This study has limitations. The diagnosis of RA was self-reported in our study. The case definition for arthritis (ie, self-reported physician-diagnosed arthritis) used in our study is recommended by the 42,43 US Centers for Disease Control and Prevention and has been validated. It is possible that limitations of survey methodology (ie, information was collected only on prescription drugs that were used by survey participants within 30 days before the interview) may have led to lower number of treated patients with RA in NHANES III; however, incorporation of drug information is 44,45 recommended, and previous studies also have reported poor treatment rates in RA. The folate status of patients was based on a single serum folate concentration measurement that may not accurately represent long-term folate levels; however, pathological studies have shown positive correlation (R = 0.53) between serum folate and liver folate (a laboratory biomarker for tissue stores 46 32 of folate). Next, consistent with findings in the general population, estimates for all-cause mortality were not significant. All-cause mortality, by definition, includes deaths due to any non-CV cause (ie, accidental or injury-related death or death due to other health conditions) and presumably has no association with serum folate. Although most confounders were taken into consideration, we did not adjust our analyses for factors that might affect serum folate levels, including health conditions in which folate absorption lowers (eg, celiac diseases or Crohn disease) or use of drugs such as phenytoin. Furthermore, the observational nature of the data precludes causal inference, and the timeframe of NHANES III data collection limits the generalizability of our findings to current clinical practices. Conclusions Our findings suggest that serum folate level is associated with CV mortality risk among patients with RA and might be a useful indicator for assessing patient risk in clinical practice. Additionally, if a causal link is validated in future clinical studies, folate supplementation can be an inexpensive strategy for reducing CV mortality risk in patients with RA. ARTICLE INFORMATION Accepted for Publication: December 30, 2019. Published: February 26, 2020. doi:10.1001/jamanetworkopen.2020.0100 Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2020 Sonawane Ketal. JAMA Network Open. Corresponding Author: Kalyani Sonawane, PhD, 1200 Pressler St, RAS E905, Center for Healthcare Data, Department of Management, Policy, and Community Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 (kalyani.b.sonawane@uth.tmc.edu). JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 8/11 JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis Author Affiliations: Center for Healthcare Data, Department of Management, Policy, and Community Health, School of Public Health, University of Texas Health Science Center at Houston (Sonawane); Center for Health Services Research, Department of Management, Policy, and Community Health, School of Public Health, University of Texas Health Science Center at Houston (Sonawane, Deshmukh); Department of Management, Policy, and Community Health, University of Texas Health Science Center at Houston (Zhu); Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston (Chan); Department of Medicine, Division of Cardiology, University of Texas Health Medical School at Houston (Aguilar); Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston (Aguilar); Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (Suarez-Almazor). Author Contributions: Dr Sonawane had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: Sonawane, Deshmukh. Acquisition, analysis, or interpretation of data: Sonawane, Zhu, Chan, Aguilar, Suarez-Almazor. Drafting of the manuscript: Sonawane, Zhu. Critical revision of the manuscript for important intellectual content: Sonawane, Chan, Aguilar, Deshmukh, Suarez- Almazor. Statistical analysis: Sonawane, Zhu, Chan, Deshmukh. Administrative, technical, or material support: Aguilar. Supervision: Sonawane, Suarez-Almazor. Conflict of Interest Disclosures: Dr Deshmukh reported serving as a consultant for Merck outside the submitted work. Dr Suarez-Almazor reported receiving grants from Pfizer and receiving consulting fees from Abbvie, Amag Pharmaceuticals, Agile Therapeutics, Bristol-Myers Squibb, Eli Lilly and Co, and Endo Pharmaceuticals outside the submitted work. No other disclosures were reported. REFERENCES 1. Meune C, Touzé E, Trinquart L, Allanore Y. Trends in cardiovascular mortality in patients with rheumatoid arthritis over 50 years: a systematic review and meta-analysis of cohort studies. Rheumatology (Oxford). 2009;48 (10):1309-1313. doi:10.1093/rheumatology/kep252 2. Hernanz A, Plaza A, Martín-Mola E, De Miguel E. Increased plasma levels of homocysteine and other thiol compounds in rheumatoid arthritis women. Clin Biochem. 1999;32(1):65-70. doi:10.1016/S0009-9120(98) 00093-9 3. Schroecksnadel K, Frick B, Kaser S, et al. Moderate hyperhomocysteinaemia and immune activation in patients with rheumatoid arthritis. Clin Chim Acta. 2003;338(1-2):157-164. doi:10.1016/j.cccn.2003.09.003 4. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta- analysis. BMJ. 2002;325(7374):1202. doi:10.1136/bmj.325.7374.1202 5. Roubenoff R, Dellaripa P, Nadeau MR, et al. Abnormal homocysteine metabolism in rheumatoid arthritis. Arthritis Rheum. 1997;40(4):718-722. doi:10.1002/art.1780400418 6. Alomari MA, Khabour OF, Alawneh K, Shammaa RA. Possible modulation of vascular function measures in rheumatoid arthritis by homocysteine. Int J Rheumatol. 2018;2018:8498651. doi:10.1155/2018/8498651 7. Seriolo B, Fasciolo D, Sulli A, Cutolo M. Homocysteine and antiphospholipid antibodies in rheumatoid arthritis patients: relationships with thrombotic events. Clin Exp Rheumatol. 2001;19(5):561-564. 8. Wållberg-Jonsson S, Cvetkovic JT, Sundqvist KG, Lefvert AK, Rantapää-Dahlqvist S. Activation of the immune system and inflammatory activity in relation to markers of atherothrombotic disease and atherosclerosis in rheumatoid arthritis. J Rheumatol. 2002;29(5):875-882. 9. Cakmak SK, Gül U, Kiliç C, Gönül M, Soylu S, Kiliç A. Homocysteine, vitamin B12 and folic acid levels in psoriasis patients. J Eur Acad Dermatol Venereol. 2009;23(3):300-303. doi:10.1111/j.1468-3083.2008.03024.x 10. Krogh Jensen M, Ekelund S, Svendsen L. Folate and homocysteine status and haemolysis in patients treated with sulphasalazine for arthritis. Scand J Clin Lab Invest. 1996;56(5):421-429. doi:10.3109/00365519609088797 11. Helliwell M, Coombes EJ, Moody BJ, Batstone GF, Robertson JC. Nutritional status in patients with rheumatoid arthritis. Ann Rheum Dis. 1984;43(3):386-390. doi:10.1136/ard.43.3.386 12. Hornung N, Ellingsen T, Stengaard-Pedersen K, Poulsen JH. Folate, homocysteine, and cobalamin status in patients with rheumatoid arthritis treated with methotrexate, and the effect of low dose folic acid supplement. J Rheumatol. 2004;31(12):2374-2381. JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 9/11 JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis 13. Vreugdenhil G, Wognum AW, van Eijk HG, Swaak AJ. Anaemia in rheumatoid arthritis: the role of iron, vitamin B12, and folic acid deficiency, and erythropoietin responsiveness. Ann Rheum Dis. 1990;49(2):93-98. doi:10.1136/ ard.49.2.93 14. Gough KR, McCarthy C, Read AE, Mollin DL, Waters AH. Folic-acid deficiency in rheumatoid arthritis. Br Med J. 1964;1(5377):212-217. doi:10.1136/bmj.1.5377.212 15. van Ede AE, Laan RF, Blom HJ, et al. Homocysteine and folate status in methotrexate-treated patients with rheumatoid arthritis. Rheumatology (Oxford). 2002;41(6):658-665. doi:10.1093/rheumatology/41.6.658 16. Visser K, Katchamart W, Loza E, et al. Multinational evidence-based recommendations for the use of methotrexate in rheumatic disorders with a focus on rheumatoid arthritis: integrating systematic literature research and expert opinion of a broad international panel of rheumatologists in the 3E Initiative. Ann Rheum Dis. 2009;68(7):1086-1093. doi:10.1136/ard.2008.094474 17. Whittle SL, Hughes RA. Folate supplementation and methotrexate treatment in rheumatoid arthritis: a review. Rheumatology (Oxford). 2004;43(3):267-271. doi:10.1093/rheumatology/keh088 18. US Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey: data files. https://wwwn.cdc.gov/nchs/nhanes/nhanes3/datafiles.aspx. Accessed February, 2019. 19. De Bruyn E, Gulbis B, Cotton F. Serum and red blood cell folate testing for folate deficiency: new features? Eur J Haematol. 2014;92(4):354-359. doi:10.1111/ejh.12237 20. Farrell CJ, Kirsch SH, Herrmann M. Red cell or serum folate: what to do in clinical practice? Clin Chem Lab Med. 2013;51(3):555-569. doi:10.1515/cclm-2012-0639 21. Benjamin EJ, Muntner P, Alonso A, et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56-e528. doi:10.1161/CIR. 22. US Centers for Disease Control and Prevention. 2015 Public-use linked mortality file. https://www.cdc.gov/nchs/ data-linkage/mortality-public.htm. Accessed January 21, 2020. 23. Austin PC, Lee DS, Fine JP. Introduction to the analysis of survival data in the presence of competing risks. Circulation. 2016;133(6):601-609. doi:10.1161/CIRCULATIONAHA.115.017719 24. Lawlor DA, Ebrahim S, Davey Smith G. Sex matters: secular and geographical trends in sex differences in coronary heart disease mortality. BMJ. 2001;323(7312):541-545. 25. Owens IP. Ecology and evolution: sex differences in mortality rate. Science. 2002;297(5589):2008-2009. 26. McGee DL; Diverse Populations Collaboration. Body mass index and mortality: a meta-analysis based on person-level data from twenty-six observational studies. Ann Epidemiol. 2005;15(2):87-97. doi:10.1016/j. annepidem.2004.05.012 27. Kaptoge S, Di Angelantonio E, Lowe G, et al; Emerging Risk Factors Collaboration. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375(9709):132-140. doi:10.1016/S0140-6736(09)61717-7 28. Davis JM III, Maradit Kremers H, Crowson CS, et al. Glucocorticoids and cardiovascular events in rheumatoid arthritis: a population-based cohort study. Arthritis Rheum. 2007;56(3):820-830. doi:10.1002/art.22418 29. Trelle S, Reichenbach S, Wandel S, et al. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. BMJ. 2011;342:c7086. 30. US Centers for Disease Control and Prevention. Analytic and reporting guidelines: the third National Health and Nutrition Examination Survey, NHANES III (1988-94). https://wwwn.cdc.gov/nchs/data/nhanes3/manuals/ nh3gui.pdf. Accessed January 21, 2020. 31. Morrison HI, Schaubel D, Desmeules M, Wigle DT. Serum folate and risk of fatal coronary heart disease. JAMA. 1996;275(24):1893-1896. doi:10.1001/jama.1996.03530480035037 32. Loria CM, Ingram DD, Feldman JJ, Wright JD, Madans JH. Serum folate and cardiovascular disease mortality among US men and women. Arch Intern Med. 2000;160(21):3258-3262. doi:10.1001/archinte.160.21.3258 33. Sonawane K, Chhatwal J, Deshmukh AA. Folic acid–containing dietary supplement consumption and risk of cardiovascular diseases in rheumatoid arthritis patients: NHANES 1999-2014. J Gen Intern Med. 2019;34(1):15-16. doi:10.1007/s11606-018-4674-5 34. Bazzano LA, Reynolds K, Holder KN, He J. Effect of folic acid supplementation on risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. JAMA. 2006;296(22):2720-2726. doi:10.1001/jama. 296.22.2720 JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 10/11 JAMA Network Open | Rheumatology Serum Folate and Cardiovascular Mortality Among Adults With Rheumatoid Arthritis 35. Li Y, Huang T, Zheng Y, Muka T, Troup J, Hu FB. Folic acid supplementation and the risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. J Am Heart Assoc. 2016;5(8):e003768. doi:10.1161/ JAHA.116.003768 36. Brouwer IA, van Dusseldorp M, Thomas CM, et al. Low-dose folic acid supplementation decreases plasma homocysteine concentrations: a randomized trial. Am J Clin Nutr. 1999;69(1):99-104. doi:10.1093/ajcn/69.1.99 37. Wald DS, Bishop L, Wald NJ, et al. Randomized trial of folic acid supplementation and serum homocysteine levels. Arch Intern Med. 2001;161(5):695-700. doi:10.1001/archinte.161.5.695 38. Slot O. Changes in plasma homocysteine in arthritis patients starting treatment with low-dose methotrexate subsequently supplemented with folic acid. Scand J Rheumatol. 2001;30(5):305-307. doi:10.1080/ 39. Morgan SL, Baggott JE, Lee JY, Alarcón GS. Folic acid supplementation prevents deficient blood folate levels and hyperhomocysteinemia during longterm, low dose methotrexate therapy for rheumatoid arthritis: implications for cardiovascular disease prevention. J Rheumatol. 1998;25(3):441-446. 40. Willers J, Hahn A. Cardiovascular risk in patients with rheumatoid arthritis: assessment of several traditional risk parameters and a German risk score model. Rheumatol Int. 2012;32(12):3741-3749. doi:10.1007/s00296-011- 2238-7 41. Stanger O, Herrmann W, Pietrzik K, et al. Clinical use and rational management of homocysteine, folic acid, and B vitamins in cardiovascular and thrombotic diseases. Z Kardiol. 2004;93(6):439-453. doi:10.1007/s00392-004- 0075-3 42. US Centers for Disease Control and Prevention. FAQs—self-reported case definitions. https://www.cdc.gov/ arthritis/data_statistics/faqs.htm. Accessed February 11, 2020. 43. Walitt BT, Constantinescu F, Katz JD, et al. Validation of self-report of rheumatoid arthritis and systemic lupus erythematosus: the Women’s Health Initiative. J Rheumatol. 2008;35(5):811-818. 44. Theis KA, Brady TJ, Sacks JJ. Where have all the patients gone? profile of US adults who report doctor- diagnosed arthritis but are not being treated. J Clin Rheumatol. 2018. doi:10.1097/RHU.0000000000000896 45. Kern DM, Chang L, Sonawane K, et al. Treatment patterns of newly diagnosed rheumatoid arthritis patients from a commercially insured population. Rheumatol Ther. 2018;5(2):355-369. doi:10.1007/s40744-018-0114-6 46. Wu A, Chanarin I, Slavin G, Levi AJ. Folate deficiency in the alcoholic: its relationship to clinical and haematological abnormalities, liver disease and folate stores. Br J Haematol. 1975;29(3):469-478. doi:10.1111/j. 1365-2141.1975.tb01844.x SUPPLEMENT. eTable 1. Factors Associated With All-Cause and Cardiovascular Mortality in Rheumatoid Arthritis, NHANES III eTable 2. Ten-Year Mortality Risk in Patients with Rheumatoid Arthritis by Serum Folate Tertile, NHANES III eTable 3. Characteristics of Patients With Rheumatoid Arthritis but Without Cardiovascular Disease by Folate Tertile, NHANES III eTable 4. Characteristics of Patients With Rheumatoid Arthritis but Without Diabetes by Folate Tertile, NHANES III eFigure 1. Sample Flow Diagram eFigure 2. Cumulative Incidence Curves for All-Cause and Cardiovascular Mortality Risk in Patients With Rheumatoid Arthritis but Without Cardiovascular Disease by Serum Folate Tertile, NHANES III eFigure 3. Cumulative Incidence Curves for All-Cause and Cardiovascular Mortality Risk in Patients With Rheumatoid Arthritis but Without Diabetes by Serum Folate Tertile, NHANES III JAMA Network Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 (Reprinted) February 26, 2020 11/11 Supplementary Online Content Sonawane K, Zhu Y, Chan W, Aguilar D, Deshmukh AA, Suarez-Almazor ME. Association of serum folate levels with cardiovascular mortality among adults with rheumatoid arthritis. JAMA Netw Open. 2020;3(2):e200100. doi:10.1001/jamanetworkopen.2020.0100 eTable 1. Factors Associated With All-Cause and Cardiovascular Mortality in Rheumatoid Arthritis, NHANES III eTable 2. Ten-Year Mortality Risk in Patients with Rheumatoid Arthritis by Serum Folate Tertile, NHANES III eTable 3. Characteristics of Patients With Rheumatoid Arthritis but Without Cardiovascular Disease by Folate Tertile, NHANES III eTable 4. Characteristics of Patients With Rheumatoid Arthritis but Without Diabetes by Folate Tertile, NHANES III eFigure 1. Sample Flow Diagram eFigure 2. Cumulative Incidence Curves for All-Cause and Cardiovascular Mortality Risk in Patients With Rheumatoid Arthritis but Without Cardiovascular Disease by Serum Folate Tertile, NHANES III eFigure 3. Cumulative Incidence Curves for All-Cause and Cardiovascular Mortality Risk in Patients With Rheumatoid Arthritis but Without Diabetes by Serum Folate Tertile, NHANES III This supplementary material has been provided by the authors to give readers additional information about their work. © 2020 Sonawane K et al. JAMA Network Open. eTable 1. Factors Associated With All-Cause and Cardiovascular Mortality in Rheumatoid Arthritis, NHANES III HAZARD RATIO (95% CI) CHARACTERISTIC ALL-CAUSE CARDIOVASCULAR Folate Tertile III vs. I 0.74 (0.54-1.03) 0.44 (0.26-0.75) II vs. I 0.63 (0.47-0.85) 0.52 (0.30-0.92) C-reactive Protein >1 mg/dL vs. Undetected 1.98 (1.46-2.69) 1.23 (0.75-2.03) 0.3-1.0 vs. Undetected 1.49 (0.97-2.29) 1.36 (0.61-3.03) Age 1.09 (1.07-1.11) 1.09 (1.06-1.13) Female vs. Male 0.79 (0.54-1.15) 1.20 (0.55-2.66) White vs. Other 1.11 (0.85-1.47) 1.31 (0.84-2.04) Body Mass Index 1.00 (0.98-1.02) 0.99 (0.96-1.03) Current smoker (Yes vs. No) 1.48 (1.18-1.86) 1.22 (0.77-1.95) Using DMARD (Yes vs. No) 0.94 (0.51-1.73) 0.48 (0.06-3.75) Using NSAID (Yes vs. No) 1.21 (0.71-2.06) 0.68 (0.38-1.20) Using Steroid (Yes vs. No) 0.90 (0.69-1.18) 1.50 (0.51-4.41) Hypertension (Yes vs. No) 1.08 (0.84-1.39) 1.23 (0.73-2.04) Diabetes (Yes vs. No) 2.68 (1.96-3.66) 2.68 (1.38-5.19) Existing CVD (Yes vs. No) 1.09 (0.82-1.46) 1.20 (0.74-1.93) NHANES, National Health and Nutrition Examination Survey; CI, Confidence Interval; DMARD, disease- modifying anti-rheumatic drug; NSAID, non-steroidal anti-inflammatory drug, CVD, cardiovascular disease. Models were adjusted for NHANES survey weights. Folate Tertile cut-off values: 4.3 and 8.2 ng/mL. © 2020 Sonawane K et al. JAMA Network Open. eTable 2. Ten-Year Mortality Risk in Patients with Rheumatoid Arthritis by Serum Folate Tertile, NHANES III FOLATE TERTILE OVERALL P for trend I II III ALL CAUSE MORTALITY No. with events / No. at risk 61/239 65/234 75/210 Unadjusted HR (95% CI ) Ref 0.80 (0.48-1.33 1.14 (0.73-1.77) 0.34 Adjusted HR (95% CI ) Ref 0.60 (0.37-0.97) 0.66 (0.41-1.07) 0.20 CARDIOVASCULAR MORTALITY No. with events / No. at risk 26/239 23/234 30/210 0.59 HR (unadjusted) Ref 0.45 (0.22-0.94) 0.74 (0.42-1.33) 95% CI Ref 0.04 HR (adjusted) Ref 0.31 (0.17-0.59) 0.39 (0.22-0.69) 95% CI Ref NHANES, National Health and Nutrition Examination Survey; HR, Hazard ratio; CI, Confidence Interval. Folate Tertile cut-off values: 9.7 and 18.6 nmol/L. Models were adjusted for NHANES survey weights. Hazard ratio adjusted for age, sex, race, C-reactive protein value, body mass index, smoking, disease- modifying anti-rheumatic drug use, steroid use, non-steroidal anti-inflammatory drug use, and history of hypertension, diabetes, and cardiovascular disease. © 2020 Sonawane K et al. JAMA Network Open. eTable 3. Characteristics of Patients With Rheumatoid Arthritis but Without Cardiovascular Disease by Folate Tertile, NHANES III FOLATE TERTILE CHARACTERISTIC TOTAL I II III Mean Age 53.72 (1.08) 50.38 (1.41) 53.46 (2.07) 57.22 (1.85) (SE), in years Male, n (%) 171 (29.59) 63 (35.78) 63 (31.09) 45 (22.08) White, n (%) 383 (87.25) 119 (81.42) 133 (88.21) 131 (91.93) Mean body mass index 27.60 (0.35) 28.27 (0.53) 27.29 (0.64) 27.29 (0.72) (SE) Mean C-reactive protein 0.118 (0.010) 0.128 (0.019) 0.099 (0.012) 0.121 (0.018) (SE), mg/L Current smoker, n (%) 282 (57.60) 114 (67.92) 85 (51.31) 83 (53.94) DMARD Use, n (%) 25 (5.2) 7 (4.1) 8 (2.1) 10 (9.4) Steroid Use, n (%) 28 (6.2) 11 (6.1) 5 (3.0) 12 (9.4) NSAID Use, n (%) 129 (21.8) 41 (24.6) 45 (17.4) 43 (23.5) Folic Acid Supplement 146 (32.1) 24 (10.9) 28 (18.8) 94 (66.1) Use, n (%) Diabetes, n (%) 68 (8.01) 16 (1.92) 25 (8.20) 27 (9.88) Hypertension, n (%) 217 (32.81) 71 (35.88) 78 (35.60) 68 (27.02) NHANES, National Health and Nutrition Examination Survey; SE, Standard error; DMARD, Disease- modifying anti-rheumatic drug; NSAID, Non-steroidal anti-inflammatory drug. Folate Tertile cut-off values: 4.3 and 8.2 ng/mL. © 2020 Sonawane K et al. JAMA Network Open. eTable 4. Characteristics of Patients With Rheumatoid Arthritis but Without Diabetes by Folate Tertile, NHANES III FOLATE TERTILE CHARACTERISTIC TOTAL I II III Mean Age 54.46 (1.06) 51.19 (1.30) 54.46 (2.05) 57.76 (1.92) (SE), in years Male, n (%) 194 (30.81) 77 (38.77) 69 (31.06) 48 (22.49) White, n (%) 401 (87.37) 122 (79.45) 140 (88.72) 139 (94.03) Mean body mass index 27.35 (0.33) 28.19 (0.49) 27.05 (0.66) 26.81 (0.68) (SE) Mean C-reactive protein 0.121 (0.011) 0.134 (0.019) 0.111 (0.014) 0.112 (0.019) (SE), mg/dL Current smoker, n (%) 301 (57.96) 131 (69.77) 94 (52.26) 76 (51.72) DMARD Use, n (%) 26 (5.0) 7 (3.8) 9 (2.1) 10 (9.0) Steroid Use, n (%) 30 (5.9) 9 (5.0) 8 (3.3) 13 (9.4) NSAID Use, n (%) 128 (19.8) 47 (26.0) 46 (15.9) 35 (17.6) Folic Acid Supplement 148 (32.5) 28 (12.0) 31 (19.6) 89 (66.3) Use, n (%) Cardiovascular Disease, 92 (10.42) 35 (11.12) 31 (9.06) 26 (11.07) n (%) Hypertension, n (%) 234 (34.28) 81 (34.83) 79 (36.11) 74 (31.88) NHANES, National Health and Nutrition Examination Survey; SE, Standard error; DMARD, Disease- modifying anti-rheumatic drug; NSAID, Non-steroidal anti-inflammatory drug. Folate Tertile cut-off values: 4.3 and 8.3 ng/mL. © 2020 Sonawane K et al. JAMA Network Open. eFigure 1. Sample Flow Diagram NHANES III participants (N=33,994) Exclude: Age <18 years (n=13,944) Pregnant (n=338) RA cohort No follow-up (n=458) n=683 No RA (n=18,416) Missing covariate information (n=155) Folate Tertile I Folate Tertile II Folate Tertile III n=239 n=234 n=210 © 2020 Sonawane K et al. JAMA Network Open. eFigure 2. Cumulative Incidence Curves for All-Cause and Cardiovascular Mortality Risk in Patients With Rheumatoid Arthritis but Without Cardiovascular Disease by Serum Folate Tertile, NHANES III © 2020 Sonawane K et al. JAMA Network Open. eFigure 3. Cumulative Incidence Curves for All-Cause and Cardiovascular Mortality Risk in Patients With Rheumatoid Arthritis but Without Diabetes by Serum Folate Tertile, NHANES III © 2020 Sonawane K et al. JAMA Network Open.

Journal

JAMA Network OpenAmerican Medical Association

Published: Feb 26, 2020

References